skip to main content


Title: Perfecting Our Set of Spectrophotometric Standard DA White Dwarfs
Abstract

We verified for photometric stability a set of DA white dwarfs with Hubble Space Telescope magnitudes from the near-ultraviolet to the near-infrared and ground-based spectroscopy by using time-spaced observations from the Las Cumbres Observatory network of telescopes. The initial list of 38 stars was whittled to 32 final ones, which comprise a high-quality set of spectrophotometric standards. These stars are homogeneously distributed around the sky and are all fainter thanr∼ 16.5 mag. Their distribution is such that at least two of them would be available to be observed from any observatory on the ground at any time at airmass less than 2. Light curves and different variability indices from the Las Cumbres Observatory data were used to determine the stability of the candidate standards. When available, Pan-STARRS1, Zwicky Transient Facility, and TESS data were also used to confirm the star classification. Our analysis showed that four DA white dwarfs may exhibit evidence of photometric variability, while a fifth is cooler than our established lower temperature limit, and a sixth star might be a binary. In some instances, due to the presence of faint nearby red sources, care should be used when observing a few of the spectrophotometric standards with ground-based telescopes. Light curves and finding charts for all the stars are provided.

 
more » « less
Award ID(s):
1815767
NSF-PAR ID:
10473908
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
940
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravitylogg, which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope  survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.

     
    more » « less
  2. ABSTRACT Some young stellar objects such as T Tauri-like ‘dipper’ stars vary due to transient partial occultation by circumstellar dust, and observations of this phenomenon inform us of conditions in the planet-forming zones close to these stars. Although many dipper stars have been identified with space missions such as Kepler/K2, ground-based telescopes offer longer term and multiwavelength perspectives. We identified 11 dipper stars in the Lupus star-forming region in data from the All-Sky Automated Survey for SuperNovae (ASAS-SN), and further characterized these using observations by the Las Cumbres Global Observatory Telescope (LCOGT) and the Transiting Exoplanet Survey Satellite (TESS), as well as archival data from other missions. Dipper stars were identified from a catalogue of nearby young stars and selected based on the statistical significance, asymmetry, and quasi-periodicity or aperiodicity of variability in their ASAS-SN light curves. All 11 stars lie above or redwards of the zero-age main sequence and have infrared (IR) excesses indicating the presence of full circumstellar discs. We obtain reddening–extinction relations for the variability of seven stars using our combined ASAS-SN-TESS and LCOGT photometry. In all cases, the slopes are below the ISM value, suggesting larger grains, and we find a tentative relation between the slope (grain size) and the $K_\text{s}-[22 \, \mu \text{m}]$ IR colour regarded as a proxy for disc evolutionary state. 
    more » « less
  3. null (Ed.)
    In this research, we are reporting the light curve of RR Lyrae type variable star TV Lyn. This star is observed in the northern hemisphere and its coordinates are 07:33:31.7 +47:48:09.8. We have used data from Las Cumbres Observatory (LCO) which consists of a worldwide network of robotic telescopes. Photometric measurements were conducted using the SBIG 6303 0.4-meter telescope with a field of view of 29’x19’. Depending on what the color of a star is when different filters are applied to it, the luminosity will change accordingly. Our data consists of four filters, Bessell B (Blue), Bessell V (visual), SDSS-I (Infrared), a nd PAN-STARRS-Z (Near Infrared). Results show that this star has a variability period of 0.2407±0.002 days, metallicity -1.49, and located at a distance of 1362±118 pc. We have used an estimate of the reddening E(B-V) as 0.08. This research is a part of an Our Solar Sibling Project by an undergraduate student with the help of a faculty advisor and an Our Solar Sibling Project Investigator. 
    more » « less
  4. Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results. In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆  = 0.588 ± 0.024  M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025   M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆  = 0.560 ± 0.028  M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis  = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π  = 23.244 ± 0.024,  d Gaia  = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology. 
    more » « less
  5. Abstract

    Rapidly evolving transients, or objects that rise and fade in brightness on timescales two to three times shorter than those of typical Type Ia or Type II supernovae (SNe), have uncertain progenitor systems and powering mechanisms. Recent studies have noted similarities between rapidly evolving transients and Type Ibn SNe, which are powered by ejecta interacting with He-rich circumstellar material (CSM). In this work we present multiband photometric and spectroscopic observations from Las Cumbres Observatory and Swift of four fast-evolving Type Ibn SNe. We compare these observations with those of rapidly evolving transients identified in the literature. We discuss several common characteristics between these two samples, including their light curve and color evolution as well as their spectral features. To investigate a common powering mechanism we construct a grid of analytical model light curves with luminosity inputs from CSM interaction as well as56Ni radioactive decay. We find that models with ejecta masses of ≈1–3M, CSM masses of ≈0.2–1M, and CSM radii of ≈20–65 au can explain the diversity of peak luminosities, rise times, and decline rates observed in Type Ibn SNe and rapidly evolving transients. This suggests that a common progenitor system—the core collapse of a high-mass star within a dense CSM shell—can reproduce the light curves of even the most luminous and fast-evolving objects, such as AT 2018cow. This work is one of the first to reproduce the light curves of both SNe Ibn and other rapidly evolving transients with a single model.

     
    more » « less