skip to main content

Search for: All records

Award ID contains: 1815767

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We used high-resolution spectra acquired with the Magellan Telescope to measure radial and rotational velocities of approximately 200 stars in the Galactic globular cluster NGC 3201. The surveyed sample includes blue straggler stars (BSSs) and reference stars in different evolutionary stages (main-sequence turnoff, subgiant, red giant, and asymptotic giant branches). The average radial velocity value (〈Vr〉 = 494.5 ± 0.5 km s−1) confirms a large systemic velocity for this cluster and was used to distinguish 33 residual field interlopers. The final sample of member stars has 67 BSSs and 114 reference stars. Similarly to what is found in other clusters, the totality of the reference stars has negligible rotation (< 20 km s−1), while the BSS rotational velocity distribution shows a long tail extending up to ∼200 km s−1, with 19 BSSs (out of 67) spinning faster than 40 km s−1. This sets the percentage of fast-rotating BSSs to ∼28%. Such a percentage is roughly comparable to that measured in other loose systems (ωCentauri, M4, and M55) and significantly larger than that measured in high-density clusters (as 47 Tucanae, NGC 6397, NGC 6752, and M30). This evidence supports a scenario where recent BSS formation (mainly from the evolution of binary systems) is occurring in low-density environments. We also find that the BSS rotational velocity tends to decrease for decreasing luminosity and surface temperature, similarly to what is observed in main-sequence stars. Hence, further investigations are needed to understand the impact of BSS internal structure on the observed rotational velocities.

    more » « less
    Free, publicly-accessible full text available October 1, 2024

    We present Magellan/M2FS spectroscopy of four recently discovered Milky Way star clusters (Gran 3/Patchick 125, Gran 4, Garro 01, and LP 866) and two newly discovered open clusters (Gaia 9 and Gaia 10) at low Galactic latitudes. We measure line-of-sight velocities and stellar parameters ([Fe/H], log g, Teff, and [Mg/Fe]) from high-resolution spectroscopy centred on the Mg triplet and identify 20–80 members per star cluster. We determine the kinematics and chemical properties of each cluster and measure the systemic proper motion and orbital properties by utilizing Gaia astrometry. We find Gran 3 to be an old, metal-poor (mean metallicity of [Fe/H] = −1.83) globular cluster located in the Galactic bulge on a retrograde orbit. Gran 4 is an old, metal-poor ([Fe/H] = −1.84) globular cluster with a halo-like orbit that happens to be passing through the Galactic plane. The orbital properties of Gran 4 are consistent with the proposed LMS-1/Wukong and/or Helmi streams merger events. Garro 01 is metal-rich ([Fe/H] = −0.30) and on a near-circular orbit in the outer disc but its classification as an open cluster or globular cluster is ambiguous. Gaia 9 and Gaia 10 are among the most distant known open clusters at $R_{\mathrm{GC}}\sim 18,~21.2~\mathrm{\, kpc}$ and most metal-poor with [Fe/H] ∼−0.50, −0.34 for Gaia 9 and Gaia 10, respectively. LP 866 is a nearby, metal-rich open cluster ([Fe/H] = +0.10). The discovery and confirmation of multiple star clusters in the Galactic plane shows the power of Gaia astrometry and the star cluster census remains incomplete.

    more » « less
  3. Abstract

    We present spectroscopic data for 16,369 stellar targets within and/or toward 38 dwarf spheroidal galaxies and faint star clusters within the Milky Way halo environment. All spectra come from observations with the multiobject, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope or Hectochelle at the MMT, reaching a typical limiting magnitudeG≲ 21. Data products include processed spectra from all observations and catalogs listing estimates—derived from template model fitting—of line-of-sight velocity (median uncertainty 1.4 km s−1) effective temperature (255 K), (base-10 logarithm of) surface gravity (0.59 dex in cgs units), [Fe/H] (0.4 dex) and [Mg/Fe] (0.27 dex) abundance ratios. The sample contains multiepoch measurements for 3720 sources, with up to 15 epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6087 likely red giant stars (based on surface gravity), and 4492 likely members (based on line-of-sight velocity and Gaia-measured proper motion) of the target systems. The number of member stars per individual target system ranges from a few, for the faintest systems, to ∼850 for the most luminous. For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 820 lie beyond 2 times the projected half-light radius of their host system, and 42 lie beyond 5Rhalf.

    more » « less
  4. Abstract

    We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.

    more » « less
  5. Abstract

    Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravitylogg, which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope  survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.

    more » « less
  6. Abstract

    We verified for photometric stability a set of DA white dwarfs with Hubble Space Telescope magnitudes from the near-ultraviolet to the near-infrared and ground-based spectroscopy by using time-spaced observations from the Las Cumbres Observatory network of telescopes. The initial list of 38 stars was whittled to 32 final ones, which comprise a high-quality set of spectrophotometric standards. These stars are homogeneously distributed around the sky and are all fainter thanr∼ 16.5 mag. Their distribution is such that at least two of them would be available to be observed from any observatory on the ground at any time at airmass less than 2. Light curves and different variability indices from the Las Cumbres Observatory data were used to determine the stability of the candidate standards. When available, Pan-STARRS1, Zwicky Transient Facility, and TESS data were also used to confirm the star classification. Our analysis showed that four DA white dwarfs may exhibit evidence of photometric variability, while a fifth is cooler than our established lower temperature limit, and a sixth star might be a binary. In some instances, due to the presence of faint nearby red sources, care should be used when observing a few of the spectrophotometric standards with ground-based telescopes. Light curves and finding charts for all the stars are provided.

    more » « less

    We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $296.0_{-3.3}^{+3.8} \rm ~ d$, semimajor axis $1.12^{+0.41}_{-0.24}\rm ~au$, and systemic velocity $-380.0 \pm 1.7 \rm ~km ~s^{-1}$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$.

    more » « less
  8. Abstract

    We present observations of the dwarf galaxies GALFA Dw3 and GALFA Dw4 with the Advanced Camera for Surveys on the Hubble Space Telescope. These galaxies were initially discovered as optical counterparts to compact Hiclouds in the GALFA survey. Both objects resolve into stellar populations which display old red giant branch (RGB), younger helium-burning, and massive main sequence stars. We use the tip of the RGB method to determine the distance to each galaxy, finding distances of7.610.29+0.28Mpc and3.100.17+0.16Mpc, respectively. With these distances we show that both galaxies are extremely isolated, with no other confirmed objects within ∼1.5 Mpc of either dwarf. GALFA Dw4 is also found to be unusually compact for a galaxy of its luminosity. GALFA Dw3 and Dw4 contain Hiiregions with young star clusters and an overall irregular morphology; they show evidence of ongoing star formation through both ultraviolet and Hαobservations and are therefore classified as dwarf irregulars (dIrrs). The star formation histories of these two dwarfs show distinct differences: Dw3 shows signs of a recently ceased episode of active star formation across the entire dwarf, while Dw4 shows some evidence for current star formation in spatially limited Hiiregions. Compact Hisources offer a promising method for identifying isolated field dwarfs in the Local Volume, including GALFA Dw3 and Dw4, with the potential to shed light on the driving mechanisms of dwarf galaxy formation and evolution.

    more » « less

    As an introduction of a kinematic survey of Magellanic Cloud (MC) star clusters, we report on the dynamical masses and mass-to-light ratios (M/L) of NGC 419 (Small Magellanic Cloud) and NGC 1846 (Large Magellanic Cloud). We have obtained more than one hundred high-resolution stellar spectra in and around each cluster using the multi-object spectrograph M2FS on the Magellan/Clay Telescope. Line-of-sight velocities and positions of the stars observed in each cluster were used as input to an expectation-maximization algorithm used to estimate cluster membership probabilities, resulting in samples of 46 and 52 likely members (PM ≥ 50 per cent) in NGC 419 and NGC 1846, respectively. This process employed single-mass King models constrained by the structural parameters of the clusters and provided self-consistent dynamical mass estimates for both clusters. Our best-fitting results show that NGC 419 has a projected central velocity dispersion of $2.44^{+0.37}_{-0.21}$ km s−1, corresponding to a total mass of $7.6^{+2.5}_{-1.3}\times 10^4\ {\rm M}_{\odot }$ and V-band M/L ratio of $0.22^{+0.08}_{-0.05}$ in solar units. For NGC 1846, the corresponding results are $2.04^{+0.28}_{-0.24}$ km s−1, $5.4^{+1.5}_{-1.4}\times 10^4\ {\rm M}_{\odot }$, and $0.32^{+0.11}_{-0.11}$. The mean metallicities of NGC 419 and NGC 1846 are found to be $\rm [Fe/H]=-0.84\pm 0.19$ and −0.70 ± 0.08, respectively, based on the spectra of likely cluster members. We find marginal statistical evidence of rotation in both clusters, though in neither cluster does rotation alter our mass estimates significantly. We critically compare our findings with those of previous kinematic studies of these two clusters in order to evaluate the consistency of our observational results and analytic tools.

    more » « less
  10. Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M / L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster. 
    more » « less