skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Damped and driven breathers and metastability
In this article we prove the existence of a new family of periodic solutions for discrete, nonlinear Schrödinger equations subject to spatially localized driving and damping. They provide an alternate description of the metastable behavior in such lattice systems which agrees with previous predictions for the evolution of metastable states while providing more accurate approximations to these states. We analyze the stability of these breathers, finding a very small positive eigenvalue whose eigenvector lies almost tangent to the surface of the cylinder formed by the family of breathers. This causes solutions to slide along the cylinder without leaving its neighborhood for very long times.  more » « less
Award ID(s):
1813384
PAR ID:
10473922
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Quarterly of Applied Mathematics
ISSN:
0033-569X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study metastable behavior in a discrete nonlinear Schrödinger equation from the viewpoint of Hamiltonian systems theory. When there are $$n<\infty $$ n < ∞ sites in this equation, we consider initial conditions in which almost all the energy is concentrated in one end of the system. We are interested in understanding how energy flows through the system, so we add a dissipation of size $$\gamma $$ γ at the opposite end of the chain, and we show that the energy decreases extremely slowly. Furthermore, the motion is localized in the phase space near a family of breather solutions for the undamped system. We give rigorous, asymptotic estimates for the rate of evolution along the family of breathers and the width of the neighborhood within which the trajectory is confined. 
    more » « less
  2. Abstract We investigate the spectral properties of one-dimensional spatially modulated nonlinear phononic lattices, and their evolution as a function of amplitude. In the linear regime, the stiffness modulations define a family of periodic and quasiperiodic lattices whose bandgaps host topological edge states localized at the boundaries of finite domains. With cubic nonlinearities, we show that edge states whose eigenvalue branch remains within the gap as amplitude increases remain localized, and therefore appear to be robust with respect to amplitude. In contrast, edge states whose corresponding branch approaches the bulk bands experience de-localization transitions. These transitions are predicted through continuation studies on the linear eigenmodes as a function of amplitude, and are confirmed by direct time domain simulations on finite lattices. Through our predictions, we also observe a series of amplitude-induced localization transitions as the bulk modes detach from the nonlinear bulk bands and become discrete breathers that are localized in one or more regions of the domain. Remarkably, the predicted transitions are independent of the size of the finite lattice, and exist for both periodic and quasiperiodic lattices. These results highlight the co-existence of topological edge states and discrete breathers in nonlinear modulated lattices. Their interplay may be exploited for amplitude-induced eigenstate transitions, for the assessment of the robustness of localized states, and as a strategy to induce discrete breathers through amplitude tuning. 
    more » « less
  3. Abstract Using the Darboux transformation for the Korteweg–de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases. 
    more » « less
  4. Abstract The complex coupled short‐pulse equation (ccSPE) describes the propagation of ultrashort optical pulses in nonlinear birefringent fibers. The system admits a variety of vector soliton solutions: fundamental solitons, fundamental breathers, composite breathers (generic or nongeneric), as well as so‐called self‐symmetric composite solitons. In this work, we use the dressing method and the Darboux matrices corresponding to the various types of solitons to investigate soliton interactions in the focusing ccSPE. The study combines refactorization problems on generators of certain rational loop groups, and long‐time asymptotics of these generators, as well as the main refactorization theorem for the dressing factors that leads to the Yang–Baxter property for the refactorization map and the vector soliton interactions. Among the results obtained in this paper, we derive explicit formulas for the polarization shift of fundamental solitons that are the analog of the well‐known formulas for the interaction of vector solitons in the Manakov system. Our study also reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather and, conversely, that the interaction of two fundamental breathers generically yields two fundamental breathers with a polarization shifts, but may also result into a fundamental soliton and a fundamental breather. Explicit formulas for the coefficients that characterize the fundamental breathers, as well as for their polarization vectors are obtained. The interactions of other types of solitons are also derived and discussed in detail and illustrated with plots. New Yang–Baxter maps are obtained in the process. 
    more » « less
  5. Abstract We consider the existence and spectral stability of multi-breather structures in the discrete Klein–Gordon equation, both for soft and hard symmetric potentials. To obtain analytical results, we project the system onto a finite-dimensional Hilbert space consisting of the first M Fourier modes, for arbitrary M . On this approximate system, we then take a spatial dynamics approach and use Lin’s method to construct multi-breathers from a sequence of well-separated copies of the primary, single-site breather. We then locate the eigenmodes in the Floquet spectrum associated with the interaction between the individual breathers of such multi-breather states by reducing the spectral problem to a matrix equation. Expressions for these eigenmodes for the approximate, finite-dimensional system are obtained in terms of the primary breather and its kernel eigenfunctions, and these are found to be in very good agreement with the numerical Floquet spectrum results. This is supplemented with results from numerical timestepping experiments, which are interpreted using the spectral computations. 
    more » « less