skip to main content


Title: A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)–mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients’ T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck−/−) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck−/− and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells—leading to intestinal inflammation.

 
more » « less
NSF-PAR ID:
10473954
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.1084
Date Published:
Journal Name:
Journal of Experimental Medicine
Volume:
221
Issue:
1
ISSN:
0022-1007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention.

    Methods

    We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+T-cells were depleted.

    Results

    High levels of inflammatory markers includingCD8Band NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+T-cell infiltration and elevatedIfngexpression in the brain. CD8+T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology.

    Conclusions

    This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+T-cells in this process in male mice.

    Graphical abstract 
    more » « less
  2. Abstract

    Regulatory T cells (Tregs) play an important role in controlling autoimmunity and limiting tissue damage and inflammation. IL2‐inducible T cell kinase (Itk) is part of the Tec family of tyrosine kinases and is a critical component of T cell receptor mediated signaling. Here, we showed that either genetic ablation of Itk signaling or inhibition of Itk signaling pathways resulted in increased frequency of “noncanonical” CD4+CD25FOXP3+Tregs (ncTregs), as well as of “canonical” CD4+CD25+FOXP3+Tregs (canTregs). Using in vivo models, we showed that ncTregs can avert the formation of acute graft‐versus‐host disease (GVHD), in part by reducing conventional T cell proliferation, proinflammatory cytokine production, and tissue damage. This reduction in GVHD occurred without disruption of graft‐versus‐leukaemia (GVL) effects. RNA sequencing revealed that a number of effector, cell adhesion, and migration molecules were upregulated inItk–/−ncTregs. Furthermore, disrupting the SLP76: ITK interaction using a specific peptide inhibitor led to enhanced Treg development in both mouse and primary human cells. This peptide inhibitor also significantly reduced inflammatory cytokine production in primary GVHD patient samples and mouse T cells without causing cell death or apoptosis. We provide evidence that specifically targeting Itk signaling could be a therapeutic strategy to treat autoimmune disorders.

     
    more » « less
  3. 2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1* and M. Graca Almeida-Porada, MD3 1Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 2Massachusetts Institute of Technology, Cambridge, MA 3Fetal Research and Therapy Program, Wake Forest Institute For Regenerative Medicine, Winston-Salem, NC Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed in those same cell types in vivo. It has been also recognized that there are marked species-specific differences in AAV-vector tropism, raising the critical question of the accuracy with which various animal models will likely predict tropism/vector transduction efficiency, and eventual treatment success in humans. Human liver tissue equivalents (hLTEs) are comprised of major cell types in the liver in physiologically relevant frequencies and possess the ability to recapitulate the biology and function of native human liver. Here, we hypothesize that hLTEs can be used as a better model to predict the efficacy and safety of AAV gene therapy in humans. We fabricated hLTEs using 75% hepatocytes, 10% stellate cells, 10% Kupffer cells, and 5% liver sinusoid-derived endothelial cells in 96-well Elplasia plates with 79 microwells per well. hLTEs were transduced at an MOI of 105vg/cell, on the day of fabrication, with the clinically relevant serotypes AAV5 (hLTE-5) or AAV3b (hLTE-3b), both encoding a GFP reporter. After 4 days of self-aggregation, live/dead assay was performed to confirm viability. Non-transduced hLTEs served as negative controls (hLTE(-)), and hLTEs exposed to 20 mM acetaminophen were used as positive controls for liver inflammation/damage. Incucyte® Live-Cell Imaging system was used to track the aggregation and GFP expression of hLTEs. Over the course of the next 5 days, media was collected to determine hepatic functionality, RNA was isolated to assess dysregulation of genes involved in inflammation and fibrosis, DNA was isolated to determine whether AAV vectors integrate into the genome of human hepatocytes and, if so, to define the frequency at which this occurs and the genomic loci of integration, and hLTEs were fixed and processed at appropriate times for histological analyses and transmission electron microscopy (TEM). TEM analysis revealed that all groups exhibited microvilli and bile-canaliculus-like structures, demonstrating the formation of a rudimentary biliary system and, more importantly, proving that hLTEs resemble native liver structure. Incucyte® imaging showed that AAV5 and AAV3b transduction impaired formation of hLTEs (57.57 ± 2.42 and 24.57 ± 4.01 spheroids/well, respectively) in comparison with hLTE(-) (74.86 ± 3.8 spheroids/well). Quantification of GFP expression demonstrated that AAV5 yielded the most efficient transduction of hLTEs (fold change in GFP expression compared to control: 2.73 ± 0.09 and 1.19 ± 0.03 for hLTE-5 and hLTE-3b, respectively). Chromogenic assays showed decreased urea production in cell culture supernatants of AAV transduced groups compared to the non-transduced hLTEs on days 6 and 10 of culture, demonstrating decreased hepatocyte functionality. However, ALT and AST levels were similar in all groups. On day 10, hLTEs were either used for RNA isolation or fixed in 4% PFA and processed for histology. Masson’s Trichrome and Alcian Blue/Sirius Red staining was performed to detect fibrosis, which was then quantified using ImageJ. These analyses showed no significant increase in fibrosis in either hLTE-5 or hLTE-3b compared to hLTE(-). Nevertheless, RT2 PCR Array for Human Fibrosis detected dysregulation of several genes involved in fibrosis/inflammation in both hLTE-5 and hLTE-3b (16/84 and 26/84, respectively). In conclusion, data collected thus far show successful recapitulation of native liver biology and demonstrate that AAV5 transduces hLTEs more efficiently than AAV3b. However, impaired self-aggregation and decreased hepatocyte functionality was observed in both AAV-transduced groups. Studies to address the incidence and location(s) of AAV integration are ongoing. We have thus shown that the hLTE system can provide critical new knowledge regarding the efficacy and safety of AAV gene therapy in the human liver. Disclosures: No relevant conflicts of interest to declare. 
    more » « less
  4. Boyle, Jon P. (Ed.)
    ABSTRACT Mitogen-activated protein kinases (MAPKs) are a conserved family of protein kinases that regulate signal transduction, proliferation, and development throughout eukaryotes. The apicomplexan parasite Toxoplasma gondii expresses three MAPKs. Two of these, extracellular signal-regulated kinase 7 (ERK7) and MAPKL1, have been implicated in the regulation of conoid biogenesis and centrosome duplication, respectively. The third kinase, MAPK2, is specific to and conserved throughout the Alveolata, although its function is unknown. We used the auxin-inducible degron system to determine phenotypes associated with MAPK2 loss of function in Toxoplasma . We observed that parasites lacking MAPK2 failed to duplicate their centrosomes and therefore did not initiate daughter cell budding, which ultimately led to parasite death. MAPK2-deficient parasites initiated but did not complete DNA replication and arrested prior to mitosis. Surprisingly, the parasites continued to grow and replicate their Golgi apparatus, mitochondria, and apicoplasts. We found that the failure in centrosome duplication is distinct from the phenotype caused by the depletion of MAPKL1. As we did not observe MAPK2 localization at the centrosome at any point in the cell cycle, our data suggest that MAPK2 regulates a process at a distal site that is required for the completion of centrosome duplication and the initiation of parasite mitosis. IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that can cause severe and fatal disease in immunocompromised patients and the developing fetus. Rapid parasite replication is critical for establishing a productive infection. Here, we demonstrate that a Toxoplasma protein kinase called MAPK2 is conserved throughout the Alveolata and essential for parasite replication. We found that parasites lacking MAPK2 protein were defective in the initiation of daughter cell budding and were rendered inviable. Specifically, T. gondii MAPK2 (TgMAPK2) appears to be required for centrosome replication at the basal end of the nucleus, and its loss causes arrest early in parasite division. MAPK2 is unique to the Alveolata and not found in metazoa and likely is a critical component of an essential parasite-specific signaling network. 
    more » « less
  5. Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled. 
    more » « less