skip to main content


Title: A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)–mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients’ T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck−/−) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck−/− and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells—leading to intestinal inflammation.

 
more » « less
PAR ID:
10473954
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.1084
Date Published:
Journal Name:
Journal of Experimental Medicine
Volume:
221
Issue:
1
ISSN:
0022-1007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone represents a collection of T cells with the same TCR sequence. Thus, the number of different T cell clones in an organism reflects the number of different T cell receptors (TCRs) that arise from recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more specifically, the clone abundance distribution, are important factors in immune functions. Specific recombination patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation rates. We describe the heterogeneous steady-state population of naive T cells (those that have not yet been antigenically triggered) by using a mean-field model of a regulated birth-death-immigration process. After accounting for random sampling, we investigate how TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the number of different clones that are represented by a specific number of cells, or “clone counts”). By using reasonable physiological parameter values and fitting predicted clone counts to experimentally sampled clone abundances, we show that realistic levels of heterogeneity in immigration rates cause very little change to predicted clone-counts, but that modest heterogeneity in proliferation rates can generate the observed clone abundances. Our analysis provides constraints among physiological parameters that are necessary to yield predictions that qualitatively match the data. Assumptions of the model and potentially other important mechanistic factors are discussed. 
    more » « less
  2. Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4 + T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4 + T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4 + and CD8 + T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8 + T cell function and preserved less differentiated CD4 + and CD8 + T cells after tumor challenge. TCR8 + CD4 + T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies. 
    more » « less
  3. Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1–deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1–deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K–AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1–deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.

     
    more » « less
  4. Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.

     
    more » « less
  5. Abstract

    A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specificRab11aa recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11aknockout mice (Rab11aΔIEC). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.

     
    more » « less