This paper addresses the long-standing open problem of observability of mass and inertia plant parameters in the adaptive identification (AID) of second-order nonlinear models of 6 degree-of-freedom rigid-body dynamical systems subject to externally applied forces and moments. Although stable methods for AID of plant parameters for this class of systems, as well numerous approaches to stable model-based direct adaptive trajectory-tracking control of such systems, have been reported, these studies have been unable to prove analytically that the adaptive parameter estimates converge to the true plant parameter values. This paper reports necessary and sufficient conditions for the uniform complete observability (UCO) of 6-DOF plant inertial parameters for a stable adaptive identifier for this class of systems. When the UCO condition is satisfied, the adaptive parameter estimates are shown to converge to the true plant parameter values. To the best of our knowledge this is the first reported proof for this class of systems of UCO of plant parameters and for convergence of adaptive parameter estimates to true parameter values.We also report a numerical simulation study of this AID approach which shows that (a) the UCO condition can be met for fully-actuated plants as well as underactuated plants with the proper choice of control input and (b) convergence of adaptive parameter estimates to the true parameter values. We conjecture that this approach can be extended to include other parameters that appear rigid body plant models including parameters for drag, buoyancy, added mass, bias, and actuators.
more »
« less
Stable nullspace adaptive parameter identification of 6 degree-of-freedom plant and actuator models for underactuated vehicles: Theory and experimental evaluation
Model-based approaches to navigation, control, and fault detection that utilize precise nonlinear models of vehicle plant dynamics will enable more accurate control and navigation, assured autonomy, and more complex missions for such vehicles. This paper reports novel theoretical and experimental results addressing the problem of parameter estimation of plant and actuator models for underactuated underwater vehicles operating in 6 degrees-of-freedom (DOF) whose dynamics are modeled by finite-dimensional Newton-Euler equations. This paper reports the first theoretical approach and experimental validation to identify simultaneously plant-model parameters (parameters such as mass, added mass, hydrodynamic drag, and buoyancy) and control-actuator parameters (control-surface models and thruster models) in 6-DOF. Most previously reported studies on parameter identification assume that the control-actuator parameters are known a priori. Moreover, this paper reports the first proof of convergence of the parameter estimates to the true set of parameters for this class of vehicles under a persistence of excitation condition. The reported adaptive identification (AID) algorithm does not require instrumentation of 6-DOF vehicle acceleration, which is required by conventional approaches to parameter estimation such as least squares. Additionally, the reported AID algorithm is applicable under any arbitrary open-loop or closed-loop control law. We report simulation and experimental results for identifying the plant-model and control-actuator parameters for an L3 OceanServer Iver3 autonomous underwater vehicle. We believe this general approach to AID could be extended to apply to other classes of machines and other classes of marine, land, aerial, and space vehicles.
more »
« less
- Award ID(s):
- 1909182
- PAR ID:
- 10474000
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 42
- Issue:
- 12
- ISSN:
- 0278-3649
- Format(s):
- Medium: X Size: p. 1070-1093
- Size(s):
- p. 1070-1093
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the development of novel fault detection and isolation (FDI) methods for model-based fault detection (MB-FD) and quotient-space fault isolation (QS-FI). This FDI approach performs MB-FD and QS-FI of single or multiple concurrent faults in plants and actuators simultaneously, without a priori knowledge of fault form, type, or dynamics. To detect faults, MB-FD characterizes deviation from nominal behavior using the plant velocity and plant and actuator parameters estimated by nullspace-based adaptive identification. To isolate (i.e. identify) faults, the QS-FI algorithm compares the estimated parameters to a nominal parameter class in progressively decreasing-dimensional quotient spaces of the parameter space. A preliminary simulation study of these proposed FDI methods applied to a three degree-of-freedom uninhabited underwater vehicle plant model shows their ability to detect as well as isolate faults for the cases of both single and multiple simultaneous faults and suggests the generalizability of the MB-FD and QS-FI approaches to any well-defined second-order plant and actuator model whose parameters enter linearly: a broad class of systems which includes aerial vehicles, marine vehicles, spacecraft, and robot arms.more » « less
-
This paper reports a novel Random Sample Consensus (RANSAC) algorithm for robust identification of second-order plant dynamical model parameters in the presence of unmodeled plant dynamics and noisy experimental data. Accurate plant dynamical models are essential to model-based control system design and for accurate numerical simulation of plant response. Studies of RANSAC approaches for plant model identification have been extremely limited and have not explored performance improvements in the presence of unmodeled dynamics. The performance of the proposed approach, evaluated in a preliminary simulation study of a planar aerial rotorcraft model, is found to be significantly more robust to the effects of unmodeled vehicle dynamics and outlier noise than conventional least squares parameter identification. We conjecture that the proposed approach may be broadly applicable to robust model parameter identification for a wide variety of plants that exhibit noisy sensor data and/or unmodeled dynamics.more » « less
-
null (Ed.)Swing oscillation is widely observed among indoor miniature autonomous blimps (MABs) due to their underactuated design and unique aerodynamic shape. A detailed dynamics model is critical for investigating this undesired movement and designing controllers to stabilize the oscillation. This paper presents a motion model that describes the coupled translational and rotational movements of a typical indoor MAB with saucer- shaped envelope. The kinematics and dynamic model of the MAB are simplified from the six-degrees-of-freedom (6-DOF) Newton–Euler equations of underwater vehicles. The model is then reduced to 3-DOF given the symmetrical design of the MAB around its vertical axis. Parameters of the motion model are estimated from the system identification experiments, and validated with experimental data.more » « less
-
Summary In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.more » « less