- Publication Date:
- NSF-PAR ID:
- 10212088
- Journal Name:
- 16th International Conference on Control, Automation, Robotics and Vision (ICARCV)
- Page Range or eLocation-ID:
- 339 to 344
- Sponsoring Org:
- National Science Foundation
More Like this
-
Swing oscillation is widely observed among indoor miniature autonomous blimps (MABs) due to their underactuated design and unique aerodynamic shape. This paper presents the modeling, identification and control system design that reduce the swing oscillation of an MAB during hovering flight. We establish a dynamic model to describe the swing motion of the MAB. The model parameters are identified from both physical measurements, computer modeling and experimental data captured during flight. A control system is designed to stabilize the swing motion with features including low latency and center-of-mass (CM) position estimation. The modeling and control methods are verified with the Georgia-Tech Miniature Autonomous Blimp (GT-MAB) during hovering flight. The experimental results show that the proposed methods can effectively reduce the swing oscillation of GT-MAB.
-
The Georgia Tech Miniature Autonomous Blimp (GT-MAB) needs localization algorithms to navigate to way-points in an indoor environment without leveraging an external motion capture system. Indoor aerial robots often require a motion capture system for localization or employ simultaneous localization and mapping (SLAM) algorithms for navigation. The proposed strategy for GT-MAB localization can be accomplished using lightweight sensors on a weight-constrained platform like the GT-MAB. We train an end-to-end convolutional neural network (CNN) that predicts the horizontal position and heading of the GT-MAB using video collected by an onboard monocular RGB camera. On the other hand, the height of the GT-MAB is estimated from measurements through a time-of-flight (ToF) single-beam laser sensor. The monocular camera and the single-beam laser sensor are sufficient for the localization algorithm to localize the GT-MAB in real time, achieving the averaged 3D positioning errors to be less than 20 cm, and the averaged heading errors to be less than 3 degrees. With the accuracy of our proposed localization method, we are able to use simple proportional-integral-derivative controllers to control the GT-MAB for waypoint navigation. Experimental results on the waypoint following are provided, which demonstrates the use of a CNN as the primary localization method formore »
-
Muscle weakness and loss of independent joint control are the 2 most common neuromotor impairments after stroke. While there are a number of approaches to improve poststroke muscle weakness, there are currently no rehabilitation strategies that directly target a patient’s inability to match and independently activate the normal patterned muscle coordination strategies, or “muscle synergies.” Our goal is to develop an EMG-based controller for retraining healthy muscle synergies in patients with stroke-related disabilities. The controller can be integrated into rehabilitation robots for their ability to structure the robot’s force output based on input EMG activity. However, developing such a controller would require a clear understanding of the relationship between the applied force from a rehabilitation robot and the resulting changes to a patient’s muscle synergies. Therefore, this study was performed to quantify how the muscle synergies of horizontal planar-reaching are affected by direction of an applied force at the end-effector (ie, hand). A 2 DOF, 10 muscle model was developed in MATLAB using parameters obtained from the OpenSim (version 3.3) open source software system. Simulation experiments were then performed in MATLAB to investigate the relationship between the applied force and the resulting muscle synergies. The simulated event was composed ofmore »
-
Since its commissioning in 2004, the UC San Diego Large High-Performance Outdoor Shake Table (LHPOST) has enabled the seismic testing of large structural, geostructural and soil-foundation-structural systems, with its ability to accurately reproduce far- and near-field ground motions. Thirty-four (34) landmark projects were conducted on the LHPOST as a national shared-use equipment facility part of the National Science Foundation (NSF) Network for Earthquake Engineering Simulation (NEES) and currently Natural Hazards Engineering Research Infrastructure (NHERI) programs, and an ISO/IEC Standard 17025:2005 accredited facility. The tallest structures ever tested on a shake table were conducted on the LHPOST, free from height restrictions. Experiments using the LHPOST generate essential knowledge that has greatly advanced seismic design practice and response predictive capabilities for structural, geostructural, and non-structural systems, leading to improved earthquake safety in the community overall. Indeed, the ability to test full-size structures has made it possible to physically validate the seismic performance of various systems that previously could only be studied at reduced scale or with computer models. However, the LHPOST's limitation of 1-DOF (uni-directional) input motion prevented the investigation of important aspects of the seismic response of 3-D structural systems. The LHPOST was originally conceived as a six degrees-of-freedom (6-DOF) shakemore »
-
Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. Amore »