- PAR ID:
- 10474035
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Nanoscale
- ISSN:
- 2040-3364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Probing the underlying attributes of triplet-triplet annihilation-based upconversion systems is necessary to enable future practical applications. Through a combination of excitation power-dependent upconversion measurements under applied magnetic fields and molecular dynamics simulations, Schmidt and coworkers have recently demonstrated a quantitative approach for extracting critical parameters detailing the intricate upconversion process.more » « less
-
Abstract The ultralong‐lived upconversion luminescence with the lifetime of 0.48 s in a broad spectral range (530–650 nm) is observed in CD49 (9‐(3‐(5‐bromopyridin‐3‐yl)prop‐2‐yn‐1‐yl)‐9
H ‐carbazole) crystal designed with donor–acceptor (carbazole–pyridine) structures under infrared excitation, simultaneously accompanied with second harmonic generation (SHG). This phenomenon indicates orderly packing donor–acceptor structures form a nonlinearly polarizable ferroelectric‐like lattice with ultralong‐lived light‐emitting states, leading to much prolonged nonlinear optical behaviors. The persistent upconversion luminescence together with SHG is largely reduced when lowering crystallinity. This implies that nonlinearly polarizable ferroelectric‐like lattice provides the necessary condition to generate persistent upconversion luminescence. Evidently, persistent upconversion luminescence becomes completely lacking when only using ultralong‐lived light‐emitting states without nonlinearly polarizable ferroelectric‐like lattice, exampled by 4‐(dimethylamino)benzonitrile dispersed in polyvinyl alcohol matrix. Magneto‐photoluminescence shows that persistent upconversion luminescence is essentially a super‐delayed fluorescence from crystalline intermolecular charge‐transfer excitons formed in the nonlinearly polarizable ferroelectric‐like lattice. Magnetodielectrics indicate crystalline intermolecular charge‐transfer excitons are coupled with nonlinearly polarizable ferroelectric‐like lattice, leading to prolonged nonlinear optical behaviors shown as persistent upconversion luminescence through super delayed fluorescence. Therefore, crystalline intermolecular charge‐transfer excitons formed in nonlinearly polarizable ferroelectric‐like lattice provide an interesting platform to generate prolonged nonlinear optical behaviors toward developing persistent upconversion luminescence under multiphoton excitation. -
Photon upconversion in the solid state has the potential to improve existing solar and infrared imaging technologies due to its achievable efficiency at low power thresholds. However, despite considerable advancements in solution-phase upconversion, expanding the library of potential solid-state annihilators and developing a fundamental understanding of their solid-state behaviors remains challenging due to intermolecular coupling affecting the underlying energy landscape. Naphtho[2,3-a]pyrene has shown promise as a suitable solid-state annihilator. However, the origin of its multiple underlying emissive features remains unknown. To this point, here, we investigate NaPy/poly(methyl methacrylate) thin films at varying concentrations to tune the intermolecular coupling strength to determine its photophysical properties at a range of temperatures between 300–50 K. The results suggest that the multiple emissive features present in the NaPy thin film emission at room temperature arise from a multidimensional I-aggregate (520 nm), an excimer (550 nm), and a strongly coupled J-dimer (620 nm). In addition, we find that at low temperatures, the emission spectrum is dominated by direct emission from the 1(TT) state.more » « less
-
Abstract Photon upconversion may have the highest impact in biological applications because incoming photons transparent to tissue can be combined to make visible light useful for photodynamic therapy and imaging. The ability to use semiconductor nanocrystals as light absorbers for photon upconversion is important because their strong absorption profiles are synthetically tunable. In particular, the use of earth‐abundant, environmentally benign silicon quantum dots (QDs) as light absorbers for photon upconversion is very attractive. In this work, the authors demonstrate a general strategy employing both physical and chemical barriers to achieve air‐stable fusion of triplet excitons photosensitized by silicon QDs, crucial to practical applications of photon upconversion. Gel permeation chromatography (GPC) and dynamic light scattering (DLS) show that thermal hydrosilylation critical for colloidal stability and efficient triplet energy transfer creates a polymeric barrier to oxygen. This kinetic barrier to oxygen arises from the presence of cross‐linked surfactants and is complemented by the sacrificial oxidation of silicon QDs itself. Photon upconversion lasted longer than 4 days with quantum yields (QYs) as high as 7.5% (out of a maximum of 50%) using Si QD light absorbers with diphenylanthracene in methyl oleate. Oil‐in‐water micelles are air‐stable for 2 days with absolute upconversion QYs of 5.5%.
-
Here, films using CdSe nanocrystal (NC) triplet photosensitizers in conjunction with diphenylanthracene (DPA) emitters were assembled to address several challenges to practical applications for solution-based photon upconversion. By using poly(9-vinylcarbazole) as a phosphorescent host in this film, volatile organic solvents are eliminated, the spontaneous crystallization of the emitter is significantly retarded, and ∼1.5% photon upconversion quantum yield (out of a maximum of 50%) is obtained. Transient absorption spectroscopy on nanosecond-to-microsecond time scales reveals this efficiency is enabled by an exceptionally long triplet lifetime of 3.4 ± 0.3 ms. Ultimately, we find the upconversion efficiency is limited by incomplete triplet–triplet annihilation, which occurs with a rate 3–4 orders of magnitude slower than in solution-phase upconversion systems.more » « less