Abstract The field of quantum materials has experienced rapid growth over the past decade, driven by exciting new discoveries with immense transformative potential. Traditional synthetic methods to quantum materials have, however, limited the exploration of architectural control beyond the atomic scale. By contrast, soft matter self‐assembly can be used to tailor material structure over a large range of length scales, with a vast array of possible form factors, promising emerging quantum material properties at the mesoscale. This review explores opportunities for soft matter science to impact the synthesis of quantum materials with advanced properties. Existing work at the interface of these two fields is highlighted, and perspectives are provided on possible future directions by discussing the potential benefits and challenges which can arise from their bridging.
more »
« less
Semiclassical resonance asymptotics for the delta potential on the half line
We compute resonance width asymptotics for the delta potential on the half-line, by deriving a formula for resonances in terms of the Lambert W function and applying a series expansion. This potential is a simple model of a thin barrier, motivated by physical problems such as quantum corrals and leaky quantum graphs.
more »
« less
- Award ID(s):
- 1708511
- PAR ID:
- 10474040
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society
- Volume:
- 150
- Issue:
- 761
- ISSN:
- 0002-9939
- Page Range / eLocation ID:
- 4909 to 4921
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.more » « less
-
Abstract Quantum computers are promising tools for simulating many-body quantum systems due to their potential scaling advantage over classical computers. While significant effort has been expended on many-fermion systems, here we simulate a model entangled many-boson system with the contracted quantum eigensolver (CQE). We generalize the CQE to many-boson systems by encoding the bosonic wavefunction on qubits. The CQE provides a compact ansatz for the bosonic wave function whose gradient is proportional to the residual of a contracted Schrödinger equation. We apply the CQE to a bosonic system, whereNquantum harmonic oscillators are coupled through a pairwise quadratic repulsion. The model is relevant to the study of coupled vibrations in molecular systems on quantum devices. Results demonstrate the potential efficiency of the CQE in simulating bosonic processes such as molecular vibrations with good accuracy and convergence even in the presence of noise.more » « less
-
Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics.more » « less
-
Abstract In this paper, we report an implementation of the quantum trajectory‐guided adaptive Gaussian (QTAG) method in a modular open‐source Libra package for quantum dynamics calculations. The QTAG method is based on a representation of wavefunctions in terms of a quantum trajectory‐guided adaptable Gaussians basis and is generalized for time‐propagation on multiple coupled surfaces to be applicable to model nonadiabatic dynamics. The potential matrix elements are evaluated within either the local harmonic or bra‐ket‐average (linear) approximations to the potential energy surfaces, the latter being a more practical option. Performance of the QTAG method is demonstrated and discussed for the Holstein and Tully models, which are the standard benchmarks for method development in the area of nonadiabatic dynamics.more » « less
An official website of the United States government

