Machine Learning (ML) opens exciting scientific opportunities in K-12 STEM classrooms. However, students struggle with interpreting ML patterns due to limited data literacy. Face glyphs offer unique benefit by leveraging our brain’s facial feature processing. Yet, they have limitations like lacking contextual information and data biases. To address this, we created three enhanced face glyph visualizations: feature-independent and feature-aligned range views, and the sequential feature inspector. In a study with 25 high school students, feature-aligned range visualization helped contextual analysis, and the sequential feature inspector reduced missing data risks. Face glyphs also benefit the global interpretation of data.
more »
« less
Associative Forms for Encoding Multivariate Climate Data
We are perpetually present in our environment, experiencing it with our senses. Scientific data describes the same environment quantitatively. Our goal is to use scientific and artistic methods to combine these environmental expressions and personal experience through the creation of glyphs visually abstracted from and associated with forms in nature in the representation of climate data. The use of these glyphs removes the distinctions between scientific data and sensory experience, to allow a fuller intuitive association between the two, creating an embodied experience and increasing awareness of the climate effects and changes all around us.
more »
« less
- Award ID(s):
- 1704904
- PAR ID:
- 10474120
- Editor(s):
- Hinrichs, U.
- Publisher / Repository:
- IEEE VIS 2023
- Date Published:
- Journal Name:
- IEEE VIS Arts Program
- ISSN:
- 2767-6994
- Subject(s) / Keyword(s):
- Glyphs environmental visualization visual association art and design principles
- Format(s):
- Medium: X
- Location:
- Melbourne, AU
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate how to co-opt the perception of causality to aid the analysis of multivariate data. We propose Dynamic Glyphs (DyGs), an animated extension to traditional glyphs. DyGs encode data relations through seemingly physical interactions between glyph parts. We hypothesize that this representation gives rise to impressions of causality, enabling observers to reason intuitively about complex, multivariate dynamics. In a crowdsourced experiment, participants’ accuracy with DyGs exceeded or was comparable to non-animated alternatives. Moreover, participants showed a propensity to infer higher-dimensional relations with DyGs. Our findings suggest that visual causality can be an effective ‘channel’ for communicating complex data relations that are otherwise difficult to think about. We discuss the implications and highlight future research opportunities.more » « less
-
Hinrichs, Uta Perin (Ed.)As scientific data continues to grow in size, complexity, and density, the representation scope of three-dimensional spaces, data sampling methods, and transfer functions have improved in parallel, allowing visualization practitioners to produce richer multidimensional encodings. Glyphs, in particular, have become an essential encoding tool due to their versatile applications in co-located multi-variate volumetric datasets. While prior work has been conducted investigating the perceptual attributes of computationally-generated three-dimensional glyph-forms for scientific visualization, their affective and expressive qualities have yet to be examined. Further, our prior work has demonstrated the benefits of artist hand-created glyph forms in contrast to commonly-used synthetic forms in increasing visual diversity, discrimination, and expressive association in complex environmental datasets. In order to begin to address this gap, we establish preliminary groundwork for an affective design space for hand-created glyph forms, produce a novel set of glyphforms based on this design space, describe a non-verbal method for discovering affective classifications of glyph-forms adopted from current affect theory, and report the results of two studies that explore how these three-dimensional forms produce consistent affective responses across assorted study cohorts.more » « less
-
Hinrichs, Ute; Perin, Charles (Ed.)As scientific data continues to grow in size, complexity, and density, the representation scope of three-dimensional spaces, data sampling methods, and transfer functions have improved in parallel, allowing visualization practitioners to produce richer multidimensional encodings. Glyphs, in particular, have become an essential encoding tool due to their versatile applications in co-located multivariate volumetric datasets. While prior work has been conducted investigating the perceptual attributes of computationally-generated three-dimensional glyph-forms for scientific visualization, their affective and expressive qualities have yet to be examined. Further, our prior work has demonstrated the benefits of artist hand-created glyph forms in contrast to commonly-used synthetic forms in increasing visual diversity, discrimination, and expressive association in complex environmental datasets. In order to begin to address this gap, we establish preliminary groundwork for an affective design space for hand-created glyph forms, produce a novel set of glyph forms based on this design space, describe a non-verbal method for discovering affective classifications of glyph-forms adopted from current affect theory, and report the results of two studies that explore how these three-dimensional forms produce consistent affective responses across assorted study cohorts.more » « less
-
This article explores the role of what might be termed embodied experience in generating knowledge about climate – specifically by focusing on conversations about the effects of climate on the body in late nineteenth-century India. Central to the story is the question of how race maps onto ideas about the body's capacity to register or perceive its environment, and how this question articulates with concerns about standardization and judgement in scientific practice. Focusing on tropical heat, I argue that the British body became figured in late colonial scientific discourse as a kind of sensing technology, one that was transformed by the heat that it registered. However, determining the effects of heat on the body was not always straightforward; the sensation of heat was, at moments, attributed not to heat but instead to light. At stake in this partial displacement from heat to light was not the sensation itself, nor the bodily effects it produced, but rather the mechanisms that produced these sensations and effects. Nevertheless, observing these racialized bodily effects was a way to know climate, arguably as important as recording data from thermometers. Along these lines, pigmentation became a powerful, if imperfect, marker of racial difference that was also thought to confer specific sensory capacities on some and not on others. And it was through these capacities, through the perceived ability of certain bodies (and not others) to register the effects of heat and light, that knowledge of climate became intimately tied to ideas about race and biology.more » « less
An official website of the United States government

