skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methyldisulfide groups enable the direct connection of air-stable metal bis(terpyridine) complexes to gold surfaces
A new ligand comprising directly-connected disulfide-based anchors provides access to air-stable metal bis(terpyridine) complexes for the functionalization of metal surfaces.  more » « less
Award ID(s):
2018740
PAR ID:
10474158
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
23
ISSN:
1477-9226
Page Range / eLocation ID:
7836 to 7842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivationmetal-binding proteins have a central role in maintaining life processes. Nearly one-third of known protein structures contain metal ions that are used for a variety of needs, such as catalysis, DNA/RNA binding, protein structure stability, etc. Identifying metal-binding proteins is thus crucial for understanding the mechanisms of cellular activity. However, experimental annotation of protein metal-binding potential is severely lacking, while computational techniques are often imprecise and of limited applicability. Resultswe developed a novel machine learning-based method, mebipred, for identifying metal-binding proteins from sequence-derived features. This method is over 80% accurate in recognizing proteins that bind metal ion-containing ligands; the specific identity of 11 ubiquitously present metal ions can also be annotated. mebipred is reference-free, i.e. no sequence alignments are involved, and is thus faster than alignment-based methods; it is also more accurate than other sequence-based prediction methods. Additionally, mebipred can identify protein metal-binding capabilities from short sequence stretches, e.g. translated sequencing reads, and, thus, may be useful for the annotation of metal requirements of metagenomic samples. We performed an analysis of available microbiome data and found that ocean, hot spring sediments and soil microbiomes use a more diverse set of metals than human host-related ones. For human microbiomes, physiological conditions explain the observed metal preferences. Similarly, subtle changes in ocean sample ion concentration affect the abundance of relevant metal-binding proteins. These results highlight mebipred’s utility in analyzing microbiome metal requirements. Availability and implementationmebipred is available as a web server at services.bromberglab.org/mebipred and as a standalone package at https://pypi.org/project/mymetal/. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Lanthanide metal ionic liquids (MILs) are tunable catalysts for the glycolysis of poly(ethylene terephthalate). Enhanced cooperativity with high ionic liquid : metal salt ratios lowers the required metal content to increase catalyst sustainability. 
    more » « less
  3. This study addresses the limitations of cross weld tensile testing (CWTT) in quantifying local mechanical properties across microstructural and compositional gradients in dissimilar– and matching–filler metal welds. A digital image correlation (DIC) methodology was validated for application in CWTT by direct comparison of stress-strain curves generated using conventional and virtual DIC extensometers in tensile testing of homogeneous steel samples. DIC-instrumented CWTT of dissimilar weld metal Alloy 625 filler metal on F65 steel demonstrated capability in quantifying the local yield strength, strain-hardening kinetics, and strain at failure in the base metal, heat-affected zone (HAZ), fusion boundary (FB) region, and weld metal in dissimilar and matching filler metal welds. It was shown that the high strain-hardening capacity in Alloy 625 weld metal led to base metal failure in CWTT despite the lower Alloy 625 weld metal yield strength. It was also shown that DIC-instrumented CWTT can be used for determining weld metal undermatching and overmatching conditions in compositionally matching- and dissimilar-metal welds. Furthermore, by quantifying local strain distribution (both elastic and plastic) in the HAZ, FB region, and weld metal, DIC-instrumented CWTT provides an additional method for evaluating hydrogen-assisted cracking susceptibility in dissimilar-metal welds. 
    more » « less
  4. Abstract Liquid metal composites are promising soft conductors for applications in soft electronics, sensors, and soft robotics. Existing liquid metal composites usually have a high‐volume fraction of liquid metal, which not only increases the density but also the material cost. Future applications in soft electronics and robotics highly demand liquid metal composites with low density and high conductivity for large‐scale, low‐cost, lightweight, and more sustainable applications. In this work, lightweight and highly conductive composites embedded with liquid metal fiber networks are synthesized. This new paradigm of liquid metal composites consists of an interconnected liquid metal fiber network embedded in a compliant rubber matrix. The liquid metal fiber network serves as an ultra‐lightweight conductive pathway for electrons. Experiments indicate that this soft conductive composite also possesses nearly strain‐insensitive conductance and superior cyclic stability. Potential applications of the composite films as stretchable interconnects, electrodes, and sensors are demonstrated. 
    more » « less
  5. The PEG addition into aqueous electrolytes has an opposite effect on an Fe metal anode compared to a Zn metal anode. 
    more » « less