skip to main content


Title: Ejecta, Rings, and Dust in SN 1987A with JWST MIRI/MRS
Abstract

Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Neii], [Arii], [Feii], and [Niii]. With the exception of [Feii] 25.99μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Feii] 5.34 to 25.99μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by44Ti decay.

 
more » « less
NSF-PAR ID:
10474177
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
958
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 95
Size(s):
["Article No. 95"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    SN 2014C was originally classified as a Type Ib supernova, but at phaseϕ= 127 days, post-explosion strong Hαemission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanningϕ= 947–2494 days post-explosion. We address the evolution of the broadened Hαemission line, as well as broad [Oiii] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant HαFWHM velocity width of ∼2000 km s−1that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s−1) present in our spectra ([Oi]λ6300; [Oiii]λλ4959, 5007; Heiλ7065; [Caii]λλ7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s−1atϕ= 1700 days) in rarified matter that contrasts with the modest velocity of the Hα. We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emission at other wavelengths (radio, X-ray) likely originates predominantly from the reverse shock in the ejecta and the forward shock in the quasi-spherical progenitor He-wind. We propose that the Hαemission arises in the boundary layer between the ejecta and torus. We also consider the possible roles of a pulsar and a binary companion.

     
    more » « less
  2. Abstract

    We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate ofṀ=102Myr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.

     
    more » « less
  3. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

     
    more » « less
  4. Abstract

    Local low-metallicity dwarf galaxies are relics of the early universe and are thought to hold clues into the origins of supermassive black holes. While recent studies are uncovering a growing population of active galactic nuclei (AGNs) in dwarf galaxies, the vast majority reside in galaxies with solar or supersolar metallicities and stellar masses comparable to that of the LMC. Using Multi-Unit Spectroscopic Explorer (MUSE) and Very Large Telescope observations, we report the detection of [Fex]λ6374 coronal line emission and a broad Hαline in the nucleus of SDSS J094401.87−003832.1, a nearby (z= 0.0049) metal-poor dwarf galaxy almost 500 times less massive than the LMC. Unlike the emission from the lower-ionization nebular lines, the [Fex]λ6374 emission is compact and centered on the brightest nuclear source, with a spatial extent of ≈100 pc, similar to that seen in well-known AGNs. The [Fex] luminosity is ≈1037erg s−1, within the range seen in previously identified AGNs in the dwarf-galaxy population. The [Fex] emission has persisted over the roughly 19 yr time period between the SDSS and MUSE observations, ruling out supernovae as the origin for the emission. The FWHM of the broad component of the Hαline is 446 ± 17 km s−1and its luminosity is ≈1.5 × 1038erg s−1, corresponding to a black hole mass of ≈ 3150M, in line with its stellar mass if virial mass relations and black hole–galaxy scaling relations apply in this mass regime. These observations, together with previously reported multiwavelength observations, can most plausibly be explained by the presence of an accreting intermediate-mass black hole in a primordial galaxy analog.

     
    more » « less
  5. Abstract

    We present results of [Cii] 158μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ∼ 20) star-forming galaxy, MACS0308-zD1 atz= 6.2078 ± 0.0002. The [Cii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [Cii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [Cii] is seen with an FWHM of 230 ± 50 km s−1. The broader [Cii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [Cii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [Cii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection ofλ158μmdust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.

     
    more » « less