In this paper, the issue of model uncertainty in safety-critical control is addressed with a data-driven approach. For this purpose, we utilize the structure of an input-output linearization controller based on a nominal model along with a Control Barrier Function and Control Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we propose a novel reinforcement learning framework which learns the model uncertainty present in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the quadratic program. The trained policy is combined with the nominal model based CBF-CLF-QP, resulting in the Reinforcement Learning based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the problem of model uncertainty in the safety constraints. The performance of the proposed method is validated by testing it on an underactuated nonlinear bipedal robot walking on randomly spaced stepping stones with one step preview, obtaining stable and safe walking under model uncertainty. 
                        more » 
                        « less   
                    
                            
                            Verified Path Following Using Neural Control Lyapunov Functions
                        
                    
    
            We present a framework that uses control Lyapunov functions (CLFs) to implement provably stable path-following controllers for autonomous mobile platforms. Our approach is based on learning a guaranteed CLF for path following by using recent approaches — combining machine learning with automated theorem proving — to train a neural network feedback law along with a CLF that guarantees stabilization for driving along low-curvature reference paths. We discuss how key properties of the CLF can be exploited to extend the range of the curvatures for which the stability guarantees remain valid. We then demonstrate that our approach yields a controller that obeys theoretical guarantees in simulation, but also performs well in practice. We show our method is both a verified method of control and better than a common MPC implementation in computation time. Additionally, we implement the controller on-board on a 18 -scale autonomous vehicle testing platform and present results for various robust path following scenarios. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1932189
- PAR ID:
- 10474221
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 205
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 1949-1958
- Format(s):
- Medium: X
- Location:
- https://proceedings.mlr.press/v205/reed23a.html
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Deep learning methods have been widely used in robotic applications, making learning-enabled control design for complex nonlinear systems a promising direction. Although deep reinforcement learning methods have demonstrated impressive empirical performance, they lack the stability guarantees that are important in safety-critical situations. One way to provide these guarantees is to learn Lyapunov certificates alongside control policies. There are three related problems: 1) verify that a given Lyapunov function candidate satisfies the conditions for a given controller on a region, 2) find a valid Lyapunov function and controller on a given region, and 3) find a valid Lyapunov function and a controller such that the region of attraction is as large as possible. Previous work has shown that if the dynamics are piecewise linear, it is possible to solve problem 1) and 2) by solving a Mixed-Integer Linear Program (MILP). In this work, we build upon this method by proposing a Lyapunov neural network that considers monotonicity over half spaces in different directions. We 1) propose a specific choice of Lyapunov function architecture that ensures non-negativity and a unique global minimum by construction, and 2) show that this can be leveraged to find the controller and Lyapunov certificates faster and with a larger valid region by maximizing the size of a square inscribed in a given level set. We apply our method to a 2D inverted pendulum, unicycle path following, a 3-D feedback system, and a 4-D cart pole system, and demonstrate it can shorten the training time by half compared to the baseline, as well as find a larger ROA.more » « less
- 
            Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately.more » « less
- 
            risk-aware planning; Conditional Value-at-Risk; Model Predictive Control; Model Predictive Path Integral (Ed.)In this paper, we present a novel Model Predictive Control method for autonomous robot planning and control subject to arbitrary forms of uncertainty. The proposed Risk- Aware Model Predictive Path Integral (RA-MPPI) control utilizes the Conditional Value-at-Risk (CVaR) measure to generate optimal control actions for safety-critical robotic applications. Different from most existing Stochastic MPCs and CVaR optimization methods that linearize the original dynamics and formulate control tasks as convex programs, the proposed method directly uses the original dynamics without restricting the form of the cost functions or the noise. We apply the novel RA-MPPI controller to an autonomous vehicle to perform aggressive driving maneuvers in cluttered environments. Our simulations and experiments show that the proposed RA-MPPI controller can achieve similar lap times with the baseline MPPI controller while encountering significantly fewer collisions. The proposed controller performs online computation at an update frequency of up to 80 Hz, utilizing modern Graphics Processing Units (GPUs) to multi-thread the generation of trajectories as well as the CVaR values.more » « less
- 
            Model uncertainties are considered in a learning-based control framework that combines control dependent barrier function (CDBF), time-varying control barrier function (TCBF), and control Lyapunov function (CLF). Tracking control is achieved by CLF, while safety-critical constraints during tracking are guaranteed by CDBF and TCBF. A reinforcement learning (RL) method is applied to jointly learn model uncertainties that related to CDBF, TCBF, and CLF. The learning-based framework eventually formulates a quadratic programming (QP) with different constraints of CDBF, TCBF and CLF involving model uncertainties. It is the first time to apply the proposed learning-based framework for safety-guaranteed tracking control of automated vehicles with uncertainties. The control performances are validated for two different single-lane change maneuvers via Simulink/CarSim® co-simulation and compared for the cases with and without learning. Moreover, the learning effects are discussed through explainable constraints in the QP formulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    