Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity’s responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.
more »
« less
From coral reefs to Joshua trees: What ecological interactions teach us about the adaptive capacity of biodiversity in the Anthropocene
The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
more »
« less
- Award ID(s):
- 1736736
- PAR ID:
- 10474271
- Publisher / Repository:
- Royal Society London
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 377
- Issue:
- 1857
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene. This article is part of the theme issue ‘Evolution and sustainability: gathering the strands for an Anthropocene synthesis’.more » « less
-
Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.more » « less
-
Abstract Climate change interacts with local processes to threaten biodiversity by disrupting the complex network of ecological interactions. While changes in network interactions drastically affect ecosystems, how ecological networks respond to climate change, in particular warming and nutrient supply fluctuations, is largely unknown. Here, using an equation-free modelling approach on monthly plankton community data in ten Swiss lakes, we show that the number and strength of plankton community interactions fluctuate and respond nonlinearly to water temperature and phosphorus. While lakes show system-specific responses, warming generally reduces network interactions, particularly under high phosphate levels. This network reorganization shifts trophic control of food webs, leading to consumers being controlled by resources. Small grazers and cyanobacteria emerge as sensitive indicators of changes in plankton networks. By exposing the outcomes of a complex interplay between environmental drivers, our results provide tools for studying and advancing our understanding of how climate change impacts entire ecological communities.more » « less
-
Abstract Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long‐term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.more » « less
An official website of the United States government

