skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disruption of ecological networks in lakes by climate change and nutrient fluctuations
Abstract Climate change interacts with local processes to threaten biodiversity by disrupting the complex network of ecological interactions. While changes in network interactions drastically affect ecosystems, how ecological networks respond to climate change, in particular warming and nutrient supply fluctuations, is largely unknown. Here, using an equation-free modelling approach on monthly plankton community data in ten Swiss lakes, we show that the number and strength of plankton community interactions fluctuate and respond nonlinearly to water temperature and phosphorus. While lakes show system-specific responses, warming generally reduces network interactions, particularly under high phosphate levels. This network reorganization shifts trophic control of food webs, leading to consumers being controlled by resources. Small grazers and cyanobacteria emerge as sensitive indicators of changes in plankton networks. By exposing the outcomes of a complex interplay between environmental drivers, our results provide tools for studying and advancing our understanding of how climate change impacts entire ecological communities.  more » « less
Award ID(s):
1660584 1655203
PAR ID:
10420171
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Climate Change
Volume:
13
Issue:
4
ISSN:
1758-678X
Page Range / eLocation ID:
389 to 396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems. 
    more » « less
  2. Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites’ conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds. 
    more » « less
  3. Abstract Ocean warming has both direct physiological and indirect ecological consequences for marine organisms. Sessile animals may be particularly vulnerable to anomalous warming given constraints in food acquisition and reproduction imposed by sessility. In temperate reef ecosystems, sessile suspension feeding invertebrates provide food for an array of mobile species and act as a critical trophic link between the plankton and the benthos. Using 14 years of seasonal benthic community data across five coastal reefs, we evaluated how communities of sessile invertebrates in southern California kelp forests responded to the “Blob”, a period of anomalously high temperatures and low phytoplankton production. We show that this event had prolonged consequences for kelp forest ecosystems. Changes to community structure, including species invasions, have persisted six years post-Blob, suggesting that a climate-driven shift in California kelp forests is underway. 
    more » « less
  4. Climate change is driving widespread changes in ecological communities. Warming temperatures often shift community composition toward more heat-tolerant taxa. The factors influencing the rate of this “thermophilization” process remain unclear. Using 10-y census data from an extensive forest plot network, we show that mature tree communities of the western United States have undergone thermophilization. The mean magnitude of climate warming over the 10-y study interval was 0.32 °C, whereas the mean magnitude of thermophilization was 0.039 °C. Differential tree mortality was the strongest demographic driver of thermophilization, rather than growth or recruitment. Thermophilization rates are associated with recent changes in temperature and hydrologic variables, as well as topography and disturbance, with insect damage showing the strongest standardized effect on thermophilization rates. On average, thermophilization occurred more rapidly on cool, north-facing hillslopes. Our results demonstrate that warming temperatures are outpacing the composition of western US forest tree communities, and that climate change may erode biodiversity patterns structured by topographic variation. 
    more » « less
  5. ABSTRACT In order to better predict climate change effects on plants and their communities, we need to improve our understanding of how various plant traits and community properties respond to warming, as well as what contexts contribute to variation in these responses. To address this knowledge gap, we compiled data from 126 in situ passive experimental warming studies on 13 different plant trait and community property responses. We then collected metadata from these studies to define 9 different study contexts spanning environmental, experimental, and plant‐level scales. We find that, globally, some traits decrease when warmed (e.g., aboveground N content), while others increase (e.g., plant biomass). We also identify contexts that contribute to variation in plant responses to warming, such as latitude, distance from northern range edge, and plant functional group, but the importance of these contexts varies based on the trait or community property measured. For example, as latitude increases, the effect of warming on reproductive traits becomes stronger, but this latitude‐trait relationship did not hold for all traits. Our study highlights how multiple plant traits and community properties respond to warming across the globe, the importance of carefully designing and interpreting the outcomes of climate change experiments, and the need for coordinated warming experiments across varying environmental contexts in order to mechanistically understand and predict plant community responses to climate warming. 
    more » « less