This paper revisits building machine learning algorithms that involve interactions between entities, such as those between financial assets in an actively managed portfolio, or interactions between users in a social network. Our goal is to forecast the future evolution of ensembles of multivariate time series in such applications (e.g., the future return of a financial asset or the future popularity of a Twitter account). Designing ML algorithms for such systems requires addressing the challenges of high-dimensional interactions and non-linearity. Existing approaches usually adopt an ad-hoc approach to integrating high-dimensional techniques into non-linear models and re- cent studies have shown these approaches have questionable efficacy in time-evolving interacting systems. To this end, we propose a novel framework, which we dub as the additive influence model. Under our modeling assump- tion, we show that it is possible to decouple the learning of high-dimensional interactions from the learning of non-linear feature interactions. To learn the high-dimensional interac- tions, we leverage kernel-based techniques, with provable guarantees, to embed the entities in a low-dimensional latent space. To learn the non-linear feature-response interactions, we generalize prominent machine learning techniques, includ- ing designing a new statistically sound non-parametric method and an ensemble learning algorithm optimized for vector re- gressions. Extensive experiments on two common applica- tions demonstrate that our new algorithms deliver significantly stronger forecasting power compared to standard and recently proposed methods.
more »
« less
A neural kernel method for capturing multiscale high-dimensional micromorphic plasticity of materials with internal structures
This paper introduces a neural kernel method to generate machine learning plasticity models for micropolar and micromorphic materials that lack material symmetry and have internal structures. Since these complex materials often require higher-dimensional parametric space to be precisely characterized, we introduce a representation learning step where we first learn a feature vector space isomorphic to a finite-dimensional subspace of the original parametric function space from the augmented labeled data expanded from the narrow band of the yield data. This approach simplifies the data augmentation step and enables us to constitute the high-dimensional yield surface in a feature space spanned by the feature kernels. In the numerical examples, we first verified the implementations with data generated from known models, then tested the capacity of the models to discover feature spaces from meso-scale simulation data generated from representative elementary volume (RVE) of heterogeneous materials with internal structures. The neural kernel plasticity model and other alternative machine learning approaches are compared in a computational homogenization problem for layered geomaterials. The results indicate that the neural kernel feature space may lead to more robust forward predictions against sparse and high-dimensional data.
more »
« less
- Award ID(s):
- 1846875
- PAR ID:
- 10474280
- Editor(s):
- De Lorenzis, L; Papadrakakis, M; Zohdi T.I.
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computer Methods in Applied Mechanics and Engineering
- Volume:
- 416
- Issue:
- C
- ISSN:
- 0045-7825
- Page Range / eLocation ID:
- 116317
- Subject(s) / Keyword(s):
- Neural kernel Micropolar continua Micromorphic continua Level set plasticity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper revisits building machine learning algorithms that involve interactions between entities, such as those between financial assets in an actively managed portfolio, or interac- tions between users in a social network. Our goal is to forecast the future evolution of ensembles of multivariate time series in such applications (e.g., the future return of a financial asset or the future popularity of a Twitter account). Designing ML algorithms for such systems requires addressing the challenges of high-dimensional interactions and non-linearity. Existing approaches usually adopt an ad-hoc approach to integrating high-dimensional techniques into non-linear models and re- cent studies have shown these approaches have questionable efficacy in time-evolving interacting systems. To this end, we propose a novel framework, which we dub as the additive influence model. Under our modeling assump- tion, we show that it is possible to decouple the learning of high-dimensional interactions from the learning of non-linear feature interactions. To learn the high-dimensional interac- tions, we leverage kernel-based techniques, with provable guarantees, to embed the entities in a low-dimensional latent space. To learn the non-linear feature-response interactions, we generalize prominent machine learning techniques, includ- ing designing a new statistically sound non-parametric method and an ensemble learning algorithm optimized for vector re- gressions. Extensive experiments on two common applica- tions demonstrate that our new algorithms deliver significantly stronger forecasting power compared to standard and recently proposed methods.more » « less
-
Microstructure-sensitive materials design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function. A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called the physics-informed neural network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of the Ti-7Al alloy by solving an inverse design problem to match the PINN-predicted final texture prediction and the experimental data.more » « less
-
Farhat, C (Ed.)Abstract We present a machine learning framework capable of consistently inferring mathematical expressions of hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelastic model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via the PNAM is that (1) it is spanned by a set of univariate basis functions that can be re‐parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi‐variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning‐generated mathematical model also requires fewer arithmetic operations than its deep neural network counterparts during deployment. This latter attribute is crucial for scaling large‐scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state‐of‐the‐art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade‐off between interpretability, accuracy, and precision of the learned symbolic hyperelastic models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics‐based knowledge.more » « less
-
Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial training to generate new samples with the same (potentially very complex) statistics as the training samples. One major form of training failure, known as mode collapse, involves the generator failing to reproduce the full diversity of modes in the target probability distribution. Here, we present an effective model of GAN training, which captures the learning dynamics by replacing the generator neural network with a collection of particles in the output space; particles are coupled by a universal kernel valid for certain wide neural networks and high-dimensional inputs. The generality of our simplified model allows us to study the conditions under which mode collapse occurs. Indeed, experiments which vary the effective kernel of the generator reveal a mode collapse transition, the shape of which can be related to the type of discriminator through the frequency principle. Further, we find that gradient regularizers of intermediate strengths can optimally yield convergence through critical damping of the generator dynamics. Our effective GAN model thus provides an interpretable physical framework for understanding and improving adversarial training.more » « less
An official website of the United States government

