Abstract Structural diversity—the volume and physical arrangement of vegetation within the three‐dimensional (3D) space of ecosystems—is a predictor of ecosystem function that can be measured at large scales with remote sensing. However, the landscape composition and configuration of structural diversity across macrosystems have not been well described. Using a relatively recently developed method to quantify landscape composition and configuration of continuous habitat or terrain, we propose the application of gradient surface metrics (GSMs) to quantify landscape patterns of structural diversity and provide insights into how its spatial pattern relates to ecosystem function. We first applied an example set of GSMs that represent landscape heterogeneity, dominance, and edge density to Lidar‐derived structural diversity within 28 forested landscapes at National Ecological Observatory Network (NEON) sites. Second, we tested for forest type, geographic location, and climate drivers of macroscale variation in GSMs of structural diversity (GSM‐SD). Third, we demonstrated the utility of these metrics for understanding spatial patterns of ecosystem function in a case study with NDVI, a proxy of productivity. We found that GSM‐SD varied in landscapes within macrosystems, with forest type, geographic location, and climate being significantly related to some but not all metrics. We also found that dominance of high peaks of height and vertical complexity of canopy vegetation and the heterogeneity of the vertical complexity and coefficient of variation of canopy vegetation height within 120‐m patches were negatively correlated with NDVI across the 28 NEON sites. However, forest type always had a significant interaction term between these GSM‐SD and NDVI relationships. Our study demonstrates that GSMs are useful to describe the landscape composition and configuration of structural diversity and its relationship with productivity that warrants further consideration for spatially motivated management decisions.
more »
« less
Diversity – volume relationships: adding structural arrangement and volume to species – area relationships across forest macrosystems
The species – area relationship (SAR) is a common pattern in which diversity increases with the area sampled, but ecosystems are three‐dimensional (3D) and diversity – volume relationships (DVRs) may exist in ecosystems that vary substantially in their vegetation volume. We tested whether forest vegetation volume, as a 3D extension of area in SARs, was a significant predictor of taxonomic (species) and structural (arrangement) diversity in five groups of organisms across the National Ecological Observatory Network (NEON). Vegetation volume and four structural arrangement metrics within the area of NEON plots were measured using NEON's discrete return lidar. Species richness was measured as the number of species within the respective NEON plot sampling area for understory plants, trees, breeding land birds, small mammals, and ground beetles. We found that volume negatively predicted understory plants and positively predicted tree and beetle species richness across the USA forest macrosystem, but not bird and small mammal species richness. Furthermore, volume was a significant predictor of several metrics that describe the internal and external heterogeneity of vegetation in forests (structural arrangement) within the ecosystem across the USA forest macrosystem. There were several significant within site‐level relationships, but not at all sites, between volume and species richness or structural arrangement in organism groups. Our study indicates that previous work that has focused on a 2D conceptualization of habitat can be expanded to 3D habitat space, but that the strength and the positive or negative direction of DVRs may vary taxonomically or geographically.
more »
« less
- Award ID(s):
- 2212859
- PAR ID:
- 10474291
- Publisher / Repository:
- Ecography
- Date Published:
- Journal Name:
- Ecography
- Volume:
- 2023
- Issue:
- 10
- ISSN:
- 0906-7590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Three‐Dimensional Habitat Structure Drives Avian Functional and Trait Diversity Across North AmericaABSTRACT Understanding how three‐dimensional (3D) habitat structure drives biodiversity patterns is key to predicting how habitat alteration and loss will affect species and community‐level patterns in the future. To date, few studies have contrasted the effects of 3D habitat composition with those of 3D habitat configuration on biodiversity, with existing investigations often limited to measures of taxonomic diversity (i.e., species richness). Here, we examined the influence of Light Detecting and Ranging (LiDAR)‐derived 3D habitat structure–both its composition and configuration–on multiple facets of bird diversity. Specifically, we used data from the National Ecological Observatory Network (NEON) to test the associations between 11 measures of 3D habitat structure and avian species richness, functional and trait diversity, and phylogenetic diversity. We found that 3D habitat structure was the most consistent predictor of avian functional and trait diversity, with little to no effect on species richness or phylogenetic diversity. Functional diversity and individual trait characteristics were strongly associated with both 3D habitat composition and configuration, but the magnitude and the direction of the effects varied across the canopy, subcanopy, midstory, and understory vertical strata. Our findings suggest that 3D habitat structure influences avian diversity through its effects on traits. By examining the effects of multiple aspects of habitat structure on multiple facets of avian diversity, we provide a broader framework for future investigations on habitat structure.more » « less
-
Within a forest, differences in landform spatial variation (i.e., geomorphic settings: valley, slope, and ridge) could affect the species richness and distribution present at a particular site. Previous studies have confirmed that plant species richness and biomass changes after a hurricane and such values can vary among geomorphic settings. Understory vegetation, including ferns, herbs, climbers, graminoids, and shrubs, accounts for more than two thirds of flora in tropical ecosystems, but there is limited information of the effect of hurricanes on these communities. We evaluated the structure and composition of understory vegetation in a post-hurricane forest in relation to geomorphic settings. This study was conducted in El Verde Research Area in the Luquillo Experimental Forest, Puerto Rico. We established 1-m2 plots within three geomorphic settings: riparian valley, slope, and ridge. Within each plot we identified species, estimated percent of cover, and collected biomass samples. Additionally, we estimated species accumulation curves and analyzed species composition among geomorphic settings using multivariate ordination. The relative species abundance of vegetation life-forms was similar among geomorphic settings, but graminoids and climbers exhibited differences in species composition. Higher forest understory biomass and percent vegetation cover was observed at this immediate post-hurricane period than what was reported pre-hurricane. The understory of valley areas had a more distinct species composition than what was observed among ridge and slope areas. The understory vegetation patterns observed would need to be followed through time and among the landforms to confirm the hurricane disturbances effects at these understory scale.more » « less
-
Abstract AimCanopy structural complexity, which describes the degree of heterogeneity in vegetation density, is strongly tied to a number of ecosystem functions, but the community and structural characteristics that give rise to variation in complexity at site to subcontinental scales are poorly defined. We investigated how woody plant taxonomic and phylogenetic diversity, maximum canopy height, and leaf area index (LAI) relate to canopy rugosity, a measure of canopy structural complexity that is correlated with primary production, light capture, and resource‐use efficiency. LocationOur analysis used 122 plots distributed across 10 ecologically and climatically variable forests spanning a > 1,500 km latitudinal gradient within the National Ecological Observatory Network (NEON) of the USA. Time period2016–2018. Taxa studiedWoody plants. MethodsWe used univariate and multivariate modelling to examine relationships between canopy rugosity, and community and structural characteristics hypothesized to drive site and subcontinental variation in complexity. ResultsSpatial variation in canopy rugosity within sites and across the subcontinent was strongly and positively related to maximum canopy height (r2 = .87 subcontinent‐wide), with the addition of species richness in a multivariate model resolving another 2% of the variation across the subcontinent. Individually, woody plant species richness and phylogenetic diversity (r2 = .17 to .44, respectively) and LAI (r2 = .16) were weakly to moderately correlated with canopy rugosity at the subcontinental scale, and inconsistently explained spatial variation in canopy rugosity within sites. Main conclusionsWe conclude that maximum canopy height is a substantially stronger predictor of complexity than diversity or LAI within and across forests of eastern North America, suggesting that canopy volume places a primary constraint on the development of structural complexity. Management and land‐use practices that encourage and sustain tall temperate forest canopies may support greater complexity and associated increases in ecosystem functioning.more » « less
-
Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.more » « less
An official website of the United States government

