Summary To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability.With global datasets ofTc, air temperature (Ta), and other environmental and biotic variables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indicated byTc&Taregression slope < 1 orTc < Taaround midday) across global extratropics, including temporal and spatial dimensions.Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 orTc > Taaround midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, theirTc–Tadifference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site‐mean ΔTexhibits larger variations than the slope indicator, suggesting ΔTis a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial‐wide ΔTvariation (0–6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%).These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermoregulation still occurs, implying that slope < 1 orTc < Taare not necessary conditions for plant thermoregulation.
more »
« less
Limits of thermal and hydrological tolerance in a foundation tree species ( Populus fremontii ) in the desert southwestern United States
Summary Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.
more »
« less
- PAR ID:
- 10474326
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 240
- Issue:
- 6
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 2298-2311
- Size(s):
- p. 2298-2311
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem.more » « less
-
Abstract The floral microenvironment impacts gametophyte viability and plant–pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood.We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring floweringHexastylis arifolia(Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen.Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5–4.8 °C for short intervals within a conserved timeframe (08:00–09:00 h). In the field, temperature inside the floral tube often deviated from ambient – floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen.Results suggest thatH. arifoliaflowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.more » « less
-
Abstract Leaf energy balance may influence plant performance and community composition. While biophysical theory can link leaf energy balance to many traits and environment variables, predicting leaf temperature and key driver traits with incomplete parameterizations remains challenging. Predicting thermal offsets (δ,Tleaf − Tairdifference) or thermal coupling strengths (β,Tleafvs.Tairslope) is challenging.We ask: (a) whether environmental gradients predict variation in energy balance traits (absorptance, leaf angle, stomatal distribution, maximum stomatal conductance, leaf area, leaf height); (b) whether commonly measured leaf functional traits (dry matter content, mass per area, nitrogen fraction, δ13C, height above ground) predict energy balance traits; and (c) how traits and environmental variables predictδandβamong species.We address these questions with diurnal measurements of 41 species co‐occurring along a 1,100 m elevation gradient spanning desert to alpine biomes. We show that (a) energy balance traits are only weakly associated with environmental gradients and (b) are not well predicted by common functional traits. We also show that (c)δandβcan be partially approximated using interactions among site environment and traits, with a much larger role for environment than traits. The heterogeneity in leaf temperature metrics and energy balance traits challenges larger‐scale predictive models of plant performance under environmental change. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Summary Models of tree–grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade‐off between water use under wet conditions and drought tolerance.We measured whole‐plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm). We also quantified whole‐plant water‐use efficiency (WUE) and relative growth rate (RGR) under well‐watered conditions.Grasses transpired twice as much as trees on a leaf‐mass basis across all soil water potentials. Grasses also had a lower Ψosmthan trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses.Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade‐off in water‐use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much‐needed whole‐plant parameter estimates for African species.more » « less