skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2017895

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves. 
    more » « less
  2. Despite an increased focus on multiscale relationships and interdisciplinary integration, few macroecological studies consider the contribution of genetic-based processes to landscape-scale patterns. We test the hypothesis that tree genetics, climate, and geography jointly drive continental-scale patterns of community structure, using genome-wide SNP data from a broadly distributed foundation tree species (Populus fremontii S. Watson) and two dependent communities (leaf-modifying arthropods and fungal endophytes) spanning southwestern North America. Four key findings emerged: (1) Tree genetic structure was a significant predictor for both communities; however, the strength of influence was both scale- and community-dependent. (2) Tree genetics was the primary driver for endophytes, explaining 17% of variation in continental-scale community structure, whereas (3) climate was the strongest predictor of arthropod structure (24%). (4) Power to detect tree genotype—community phenotype associations changed with scale of genetic organization, increasing from individuals to populations to ecotypes, emphasizing the need to consider nonstationarity (i.e., changes in the effects of factors on ecological processes across scales) when inferring macrosystem properties. Our findings highlight the role of foundation tree species as drivers of macroscale community structure and provide macrosystems ecology with a theoretical framework for linking fine- and intermediate-scale genetic processes to landscape-scale patterns. Management of the genetic diversity harbored within foundation species is a critical consideration for conserving and sustaining regional biodiversity. 
    more » « less