Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how vegetation responds to drought is fundamental for understanding the broader implications of climate change on foundation tree species that support high biodiversity. Leveraging remote sensing technology provides a unique vantage point to explore these responses across and within species.We investigated interspecific drought responses of twoPopulusspecies (P.fremontii,P.angustifolia) and their naturally occurring hybrids using leaf‐level visible through shortwave infrared (VSWIR; 400–2500 nm) reflectance. AsF1hybrids backcross with either species, resulting in a range of backcross genotypes, we heretofore refer to the two species and their hybrids collectively as ‘cross types’. We additionally explored intraspecific variation inP. fremontiidrought response at the leaf and canopy levels using reflectance data and thermal unmanned aerial vehicle (UAV) imagery. We employed several analyses to assess genotype‐by‐environment (G × E) interactions concerning drought, including principal component analysis, support vector machine and spectral similarity index.Five key findings emerged: (1) Spectra of all three cross types shifted significantly in response to drought. The magnitude of these reaction norms can be ranked from hybrids>P. fremontii>P. angustifolia, suggesting differential variation in response to drought; (2) Spectral space among cross types constricted under drought, indicating spectral—and phenotypic—convergence; (3) Experimentally, populations ofP. fremontiifrom cool regions had different responses to drought than populations from warm regions, with source population mean annual temperature driving the magnitude and direction of change in VSWIR reflectance. (4) UAV thermal imagery revealed that watered, warm‐adapted populations maintained lower leaf temperatures and retained more leaves than cool‐adapted populations, but differences in leaf retention decreased when droughted. (5) These findings are consistent with patterns of local adaptation to drought and temperature stress, demonstrating the ability of leaf spectra to detect ecological and evolutionary responses to drought as a function of adaptation to different environments.Synthesis.Leaf‐level spectroscopy and canopy‐level UAV thermal data captured inter‐ and intraspecific responses to water stress in cottonwoods, which are widely distributed in arid environments. This study demonstrates the potential of remote sensing to monitor and predict the impacts of drought on scales varying from leaves to landscapes.more » « less
-
Summary Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.more » « less
-
Free, publicly-accessible full text available November 1, 2026
-
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf‐level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6‐year‐old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%–98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%–23% of spectral variation within populations and 14%–48% of the variation across all populations. Second, we found gene by environment interactions leading to population‐specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.more » « less
-
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree speciesPopulus fremontiiwere studied in a controlled common garden during a record summer heatwave—where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.more » « less
-
Despite an increased focus on multiscale relationships and interdisciplinary integration, few macroecological studies consider the contribution of genetic-based processes to landscape-scale patterns. We test the hypothesis that tree genetics, climate, and geography jointly drive continental-scale patterns of community structure, using genome-wide SNP data from a broadly distributed foundation tree species (Populus fremontii S. Watson) and two dependent communities (leaf-modifying arthropods and fungal endophytes) spanning southwestern North America. Four key findings emerged: (1) Tree genetic structure was a significant predictor for both communities; however, the strength of influence was both scale- and community-dependent. (2) Tree genetics was the primary driver for endophytes, explaining 17% of variation in continental-scale community structure, whereas (3) climate was the strongest predictor of arthropod structure (24%). (4) Power to detect tree genotype—community phenotype associations changed with scale of genetic organization, increasing from individuals to populations to ecotypes, emphasizing the need to consider nonstationarity (i.e., changes in the effects of factors on ecological processes across scales) when inferring macrosystem properties. Our findings highlight the role of foundation tree species as drivers of macroscale community structure and provide macrosystems ecology with a theoretical framework for linking fine- and intermediate-scale genetic processes to landscape-scale patterns. Management of the genetic diversity harbored within foundation species is a critical consideration for conserving and sustaining regional biodiversity.more » « less
An official website of the United States government
