skip to main content


Title: Multifunctional Materials Strategies for Enhanced Safety of Wireless, Skin‐Interfaced Bioelectronic Devices
Abstract

Many recently developed classes of wireless, skin‐interfaced bioelectronic devices rely on conventional thermoset silicone elastomer materials, such as poly(dimethylsiloxane) (PDMS), as soft encapsulating structures around collections of electronic components, radio frequency antennas and, commonly, rechargeable batteries. In optimized layouts and device designs, these materials provide attractive features, most prominently in their gentle, noninvasive interfaces to the skin even at regions of high curvature and large natural deformations. Past studies, however, overlook opportunities for developing variants of these materials for multimodal means to enhance the safety of the devices against failure modes that range from mechanical damage to thermal runaway. This study presents a self‐healing PDMS dynamic covalent matrix embedded with chemistries that provide thermochromism, mechanochromism, strain‐adaptive stiffening, and thermal insulation, as a collection of attributes relevant to safety. Demonstrations of this materials system and associated encapsulation strategy involve a wireless, skin‐interfaced device that captures mechanoacoustic signatures of health status. The concepts introduced here can apply immediately to many other related bioelectronic devices.

 
more » « less
NSF-PAR ID:
10474503
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
34
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent advances in flexible materials, nanomanufacturing, and system integration have provided a great opportunity to develop wearable flexible hybrid electronics for human healthcare, diagnostics, and therapeutics. However, existing medical devices still rely on rigid electronics with many wires and separate components, which hinders wireless, comfortable, continuous monitoring of health‐related human motions. Advanced materials and system integration technologies are introduced that enable soft, active wireless, thin‐film bioelectronics. This low‐modulus, highly flexible wearable electronic system incorporates a nanomembrane wireless circuit and functional chip components enclosed by a soft elastomeric membrane. It can be gently and seamlessly mounted on the skin, while offering comfortable, highly sensitive and accurate detection of head movements. The wireless, skin‐like bioelectronic system (SKINTRONICS) is utilized for quantitative diagnostics of cervical dystonia (CD), which is characterized by involuntary abnormal head postures and repetitive head movements, sometimes with neck muscle pain. A set of analytical and experimental studies shows a soft system packaging, hard–soft materials integration, and quantitative assessment of physiological signals detected by the SKINTRONICS. In vivo demonstration, involving 10 human subjects, finds the device feasible for use in CD measurement.

     
    more » « less
  2. Abstract

    Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor.

     
    more » « less
  3. The skin exhibits nonlinear mechanics, which is initially soft and stiffens rapidly as being stretched to prevent large deformation‐induced injuries. Developing skin‐interfaced bioelectronics with skin‐inspired nonlinear mechanical behavior, together with multiple other desired features (breathable, antibacterial, and sticky), is desirable yet challenging. Herein, this study reports the design, fabrication, and biomedical application of porous mesh bioelectronics that can simultaneously achieve these features. On the one hand, porous serpentine meshes of polyimide (PI) are designed and fabricated under the guidance of theoretical simulations to provide skin‐like nonlinear mechanics and high breathability. On the other hand, ultrasoft, sticky, and antibacterial polydimethylsiloxane (PDMS) is developed through epsilon polylysine (ε‐PL) modifications, which are currently lacking in the field. Here,ε‐PL‐modified PDMS is spray‐coated on PI meshes to form the core–shell structures without blocking their pores to offer ultrasoft, sticky, and antibacterial skin interfaces. And rationally designed porous hybrid meshes can not only retain skin‐like nonlinear mechanical properties but also enable the integration of both soft and hard bioelectronic components for various healthcare applications. As the exemplar example, this study integrates soft silver nanowires (AgNWs) based electrophysiological sensors and rigid commercial accelerometers on multifunctional porous meshes for concurrently monitoring heart electrical and mechanical functions to provide comprehensive information on the evolving heart status. 
    more » « less
  4. Abstract

    Progress in implanted bioelectronic technology offers the opportunity to develop more effective tools for personalized electronic medicine. While there are numerous clinical and pre‐clinical applications for these devices, power delivery to these systems can be challenging. Wireless battery‐free devices offer advantages such as a smaller and lighter device footprint and reduced failures and infections by eliminating lead wires. However, with the development of wireless technologies, there are fundamental tradeoffs between five essential factors: power, miniaturization, depth, alignment tolerance, and transmitter distance, while still allowing devices to work within safety limits. These tradeoffs mean that multiple forms of wireless power transfer are necessary for different devices to best meet the needs for a given biological target. Here six different types of wireless power transfer technologies used in bioelectronic implants—inductive coupling, radio frequency, mid‐field, ultrasound, magnetoelectrics, and light—are reviewed in context of the five tradeoffs listed above. This core group of wireless power modalities is then used to suggest possible future bioelectronic technologies and their biological applications.

     
    more » « less
  5. Abstract

    Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin‐interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP—critical for guiding clinical decision‐making in the PICU. The results presented here focus on materials and mechanics that optimize the system‐level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin‐interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.

     
    more » « less