Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4with other metals.
more » « less- Award ID(s):
- 2108307
- PAR ID:
- 10474562
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability.more » « less
-
Supported metal nanoparticle catalysts have become increasingly crucial for many catalytic applications. However, long‐term catalyst stability remains a problem due to catalyst deactivation caused by coke formation and sintering. The deposition of a thin overcoating via atomic layer deposition (ALD) onto metal‐supported nanoparticles has shown to greatly inhibit catalyst deactivation. This work utilizes a model catalyst system comprised of Pt nanoparticles supported on Al2O3to demonstrate the effect of an atomically thin overcoating on supported metal nanoparticles. Continuous operando small‐angle X‐ray scattering (SAXS) and X‐ray absorption near edge spectroscopy (XANES) monitor structural and electronic changes to the catalyst and overcoating during calcination. SAXS data fitting reveals the formation of nanopores in the overcoating at high temperatures, while XANES monitors the oxidation state of the Pt catalyst. Herein, the usefulness of combined X‐ray techniques is demonstrated to characterize supported metal catalysts to further understanding of the synergistic effects of the ALD overcoating to aid in the design of new catalyst materials.
-
Abstract Co2C, an emerging catalyst for the conversion of syngas to oxygenates, shows support‐sensitive behavior that has not yet been fully explained. Here, we characterize Co catalysts modified with ZnO atomic layer deposition on SiO2, carbon, CeO2, and Al2O3supports. We find that under syngas conditions, ZnO‐promoted Co transforms into Co2C on SiO2, carbon, and CeO2, but not on Al2O3. Moreover, the support affects the extent of carburization: while the SiO2‐supported catalyst carburizes completely, carbon‐ and CeO2‐supported catalysts show incomplete conversion of Co to Co2C. These three catalysts also exhibit different oxygenate selectivities. In contrast, the modified Al2O3‐supported catalyst retains the Fischer‐Tropsch catalytic properties of metallic Co. By depositing increasing amounts of Al2O3by ALD on the SiO2support, decreasing Co2C formation and oxygenate selectivity occurs.
In‐situ XANES reveals that Al2O3prevents Co2C formation by enabling the ZnO to restructure into ZnAl2O4during reduction. Thus, in addition to modifying the active catalyst phase, the promoter can also strongly interact with the support, significantly impacting catalyst performance. -
null (Ed.)Nonoxidative alkane dehydrogenation is a promising route to produce olefins, commonly used as building blocks in the chemical industry. Metal oxides, including γ-Al 2 O 3 and β-Ga 2 O 3 , are attractive dehydrogenation catalysts due to their surface Lewis acid–base properties. In this work, we use density functional theory (DFT) to investigate nonoxidative dehydrogenation of ethane, propane, and isobutane on the Ga-doped and undoped (100) γ-Al 2 O 3 via the concerted and stepwise mechanisms. We revealed that doping (100) γ-Al 2 O 3 with Ga atoms has significant improvement in the dehydrogenation activity by decreasing the C–H activation barriers of the kinetically favored concerted mechanism and increasing the overall dehydrogenation turnover frequencies. We identified the dissociated H 2 binding energy as an activity descriptor for alkane dehydrogenation, accounting for the strength of the Lewis acidity and basicity of the active sites. We demonstrate linear correlations between the dissociated H 2 binding energy and the activation barriers of the rate determining steps for both the concerted and stepwise mechanisms. We further found the carbenium ion stability to be a quantitative reactant-type descriptor, correlating with the C–H activation barriers of the different alkanes. Importantly, we developed an alkane dehydrogenation model that captures the effect of catalyst acid–base surface properties (through dissociated H 2 binding energy) and reactant substitution (through carbenium ion stability). Additionally, we show that the dissociated H 2 binding energy can be used to predict the overall dehydrogenation turnover frequencies. Taken together, our developed methodology facilitates the screening and discovery of alkane dehydrogenation catalysts and demonstrates doping as an effective route to enhance catalytic activity.more » « less
-
Abstract Propane and propene oxidations on M1 phase MoVTeNb mixed oxide catalysts exhibit relatively high selectivity to acrolein and acrylic acid. We probe the ability of the reactant molecules to access the catalytic sites inside the heptagonal pores of these oxides and analyze elementary steps that limit selectivity. Measured propane/cyclohexane activation rate ratios on MoVTeNbO are nearly an order of magnitude higher than non‐microporous VOx/SiO2, which suggests significant contribution of M1 phase pores to propane activation because both molecules react via homologous rate‐limiting C−H activation. Density functional theory suggests that desired C3H8dehydrogenation and C3H6allylic oxidation to acrolein and acrylic acid are limited by C−H activation steps, while less valuable oxygenates form via steps limited by C−O bond formation. Calculated activation barriers for C−O formation are invariably higher than C−H activation when these activations occur inside the pores, suggesting that reactions restricted within the pores are highly selective to desired products. These results demonstrate the role of pore confinement and a framework to assess selectivity limitation in hydrocarbon oxidations involving a complex network of sequential and parallel steps.