skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 9, 2024

Title: Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning
Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.  more » « less
Award ID(s):
2346091
NSF-PAR ID:
10474591
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 60th ACM/IEEE Design Automation Conference (DAC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Pre-training serves as a broadly adopted starting point for transfer learning on various downstream tasks. Recent investigations of lottery tickets hypothesis (LTH) demonstrate such enormous pre-trained models can be replaced by extremely sparse subnetworks (a.k.a. matching subnetworks) without sacrificing transferability. However, practical security-crucial applications usually pose more challenging requirements beyond standard transfer, which also demand these subnetworks to overcome adversarial vulnerability. In this paper, we formulate a more rigorous concept, Double-Win Lottery Tickets, in which a located subnetwork from a pre-trained model can be independently transferred on diverse downstream tasks, to reach BOTH the same standard and robust generalization, under BOTH standard and adversarial training regimes, as the full pre-trained model can do. We comprehensively examine various pre-training mechanisms and find that robust pre-training tends to craft sparser double-win lottery tickets with superior performance over the standard counterparts. For example, on downstream CIFAR-10/100 datasets, we identify double-win matching subnetworks with the standard, fast adversarial, and adversarial pre-training from ImageNet, at 89.26%/73.79%, 89.26%/79.03%, and 91.41%/83.22% sparsity, respectively. Furthermore, we observe the obtained double-win lottery tickets can be more data-efficient to transfer, under practical data-limited (e.g., 1% and 10%) downstream schemes. Our results show that the benefits from robust pre-training are amplified by the lottery ticket scheme, as well as the data-limited transfer setting. 
    more » « less
  2. null (Ed.)
    In natural language processing (NLP), enormous pre-trained models like BERT have become the standard starting point for training on a range of downstream tasks, and similar trends are emerging in other areas of deep learning. In parallel, work on the lottery ticket hypothesis has shown that models for NLP and computer vision contain smaller matching subnetworks capable of training in isolation to full accuracy and transferring to other tasks. In this work, we combine these observations to assess whether such trainable, transferrable subnetworks exist in pre-trained BERT models. For a range of downstream tasks, we indeed find matching subnetworks at 40% to 90% sparsity. We find these subnetworks at (pre-trained) initialization, a deviation from prior NLP research where they emerge only after some amount of training. Subnetworks found on the masked language modeling task (the same task used to pre-train the model) transfer universally; those found on other tasks transfer in a limited fashion if at all. As large-scale pre-training becomes an increasingly central paradigm in deep learning, our results demonstrate that the main lottery ticket observations remain relevant in this context. 
    more » « less
  3. null (Ed.)
    The computer vision world has been re-gaining enthusiasm in various pre-trained models, including both classical ImageNet supervised pre-training and recently emerged self-supervised pre-training such as simCLR and MoCo. Pre-trained weights often boost a wide range of downstream tasks including classification, detection, and segmentation. Latest studies suggest that pre-training benefits from gigantic model capacity. We are hereby curious and ask: after pre-training, does a pre-trained model indeed have to stay large for its downstream transferability? In this paper, we examine supervised and self-supervised pre-trained models through the lens of the lottery ticket hypothesis (LTH). LTH identifies highly sparse matching subnetworks that can be trained in isolation from (nearly) scratch yet still reach the full models' performance. We extend the scope of LTH and question whether matching subnetworks still exist in pre-trained computer vision models, that enjoy the same downstream transfer performance. Our extensive experiments convey an overall positive message: from all pre-trained weights obtained by ImageNet classification, simCLR, and MoCo, we are consistently able to locate such matching subnetworks at 59.04% to 96.48% sparsity that transfer universally to multiple downstream tasks, whose performance see no degradation compared to using full pre-trained weights. Further analyses reveal that subnetworks found from different pre-training tend to yield diverse mask structures and perturbation sensitivities. We conclude that the core LTH observations remain generally relevant in the pre-training paradigm of computer vision, but more delicate discussions are needed in some cases. 
    more » « less
  4. Neural architecture search (NAS) has demonstrated amazing success in searching for efficient deep neural networks (DNNs) from a given supernet. In parallel, lottery ticket hypothesis has shown that DNNs contain small subnetworks that can be trained from scratch to achieve a comparable or even higher accuracy than the original DNNs. As such, it is currently a common practice to develop efficient DNNs via a pipeline of first search and then prune. Nevertheless, doing so often requires a tedious and costly process of search-train-prune-retrain and thus prohibitive computational cost. In this paper, we discover for the first time that both efficient DNNs and their lottery subnetworks (i.e., lottery tickets) can be directly identified from a supernet, which we term as SuperTickets, via a two-in-one training scheme with jointly architecture searching and parameter pruning. Moreover, we develop a progressive and unified SuperTickets identificationcesstab strategy that allows the connectivity of subnetworks to change during supernet training, achieving better accuracy and efficiency trade-offs than conventional sparse training. Finally, we evaluate whether such identified SuperTickets drawn from one task can transfer well to other tasks, validating their potential of simultaneously handling multiple tasks. Extensive experiments and ablation studies on three tasks and four benchmark datasets validate that our proposed SuperTickets achieve boosted accuracy and efficiency trade-offs than both typical NAS and pruning pipelines, regardless of having retraining or not. Codes and pretrained models are available at https://github.com/RICE-EIC/SuperTickets. 
    more » « less
  5. Pruning large neural networks to create high-quality, independently trainable sparse masks, which can maintain similar performance to their dense counterparts, is very desirable due to the reduced space and time complexity. As research effort is focused on increasingly sophisticated pruning methods that leads to sparse subnetworks trainable from the scratch, we argue for an orthogonal, under-explored theme: improving training techniques for pruned sub-networks, i.e. sparse training. Apart from the popular belief that only the quality of sparse masks matters for sparse training, in this paper we demonstrate an alternative opportunity: one can carefully customize the sparse training techniques to deviate from the default dense network training protocols, consisting of introducing ``ghost" neurons and skip connections at the early stage of training, and strategically modifying the initialization as well as labels. Our new sparse training recipe is generally applicable to improving training from scratch with various sparse masks. By adopting our newly curated techniques, we demonstrate significant performance gains across various popular datasets (CIFAR-10, CIFAR-100, TinyImageNet), architectures (ResNet-18/32/104, Vgg16, MobileNet), and sparse mask options (lottery ticket, SNIP/GRASP, SynFlow, or even randomly pruning), compared to the default training protocols, especially at high sparsity levels. 
    more » « less