Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.
more »
« less
SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter Pruning
Neural architecture search (NAS) has demonstrated amazing success in searching for efficient deep neural networks (DNNs) from a given supernet. In parallel, lottery ticket hypothesis has shown that DNNs contain small subnetworks that can be trained from scratch to achieve a comparable or even higher accuracy than the original DNNs. As such, it is currently a common practice to develop efficient DNNs via a pipeline of first search and then prune. Nevertheless, doing so often requires a tedious and costly process of search-train-prune-retrain and thus prohibitive computational cost. In this paper, we discover for the first time that both efficient DNNs and their lottery subnetworks (i.e., lottery tickets) can be directly identified from a supernet, which we term as SuperTickets, via a two-in-one training scheme with jointly architecture searching and parameter pruning. Moreover, we develop a progressive and unified SuperTickets identificationcesstab strategy that allows the connectivity of subnetworks to change during supernet training, achieving better accuracy and efficiency trade-offs than conventional sparse training. Finally, we evaluate whether such identified SuperTickets drawn from one task can transfer well to other tasks, validating their potential of simultaneously handling multiple tasks. Extensive experiments and ablation studies on three tasks and four benchmark datasets validate that our proposed SuperTickets achieve boosted accuracy and efficiency trade-offs than both typical NAS and pruning pipelines, regardless of having retraining or not. Codes and pretrained models are available at https://github.com/RICE-EIC/SuperTickets.
more »
« less
- Award ID(s):
- 1838873
- PAR ID:
- 10490400
- Publisher / Repository:
- Computer Vision - ECCV 2022
- Date Published:
- Journal Name:
- Computer Vision – ECCV 2022: 17th European Conference
- Page Range / eLocation ID:
- 674-690
- Format(s):
- Medium: X
- Location:
- Tel Aviv, Israel
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large neural networks can be pruned to a small fraction of their original size, with little loss in accuracy, by following a time-consuming "train, prune, re-train" approach. Frankle & Carbin conjecture that we can avoid this by training lottery tickets, i.e., special sparse subnetworks found at initialization, that can be trained to high accuracy. However, a subsequent line of work presents concrete evidence that current algorithms for finding trainable networks at initialization, fail simple baseline comparisons, e.g., against training random sparse subnetworks. Finding lottery tickets that train to better accuracy compared to simple baselines remains an open problem. In this work, we resolve this open problem by proposing Gem-Miner which finds lottery tickets at initialization that beat current baselines. Gem-Miner finds lottery tickets trainable to accuracy competitive or better than Iterative Magnitude Pruning (IMP), and does so up to 19x faster.more » « less
-
Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20).more » « less
-
Low precision deep neural network (DNN) training is one of the most effective techniques for boosting DNNs’ training efficiency, as it trims down the training cost from the finest bit level. While existing works mostly fix the model precision during the whole training process, a few pioneering works have shown that dynamic precision schedules help NNs converge to a better accuracy while leading to a lower training cost than their static precision training counterparts. However, existing dynamic low precision training methods rely on manually designed precision schedules to achieve advantageous efficiency and accuracy trade-offs, limiting their more comprehensive practical applications and achievable performance. To this end, we propose LDP, a Learnable Dynamic Precision DNN training framework that can automatically learn a temporally and spatially dynamic precision schedule during training towards optimal accuracy and efficiency trade-offs. It is worth noting that LDP-trained DNNs are by nature efficient during inference. Further more, we visualize the resulting temporal and spatial precision schedule and distribution of LDP trained DNNs on different tasks to better understand the corresponding DNNs’ characteristics at different training stages and DNN layers both during and after training, drawing insights for promoting further innovations. Extensive experiments and ablation studies (seven networks, five datasets, and three tasks) show that the proposed LDP consistently outperforms state-of-the-art (SOTA) low precision DNN training techniques in terms of training efficiency and achieved accuracy trade-offs. For example, in addition to having the advantage of being automated, our LDP achieves a 0.31% higher accuracy with a 39.1% lower computational cost when training ResNet-20 on CIFAR-10 as compared with the best SOTA method.more » « less
-
In this paper, we propose Efficient Progressive Neural Architecture Search (EPNAS), a neural architecture search (NAS) that efficiently handles large search space through a novel progressive search policy with performance prediction based on REINFORCE [37]. EPNAS is designed to search target networks in parallel, which is more scalable on parallel systems such as GPU/TPU clusters. More importantly, EPNAS can be generalized to architecture search with multiple resource constraints, e.g., model size, compute complexity or intensity, which is crucial for deployment in widespread platforms such as mobile and cloud. We compare EPNAS against other state-of-the-art (SoTA) network architectures (e.g., MobileNetV2 [39]) and efficient NAS algorithms (e.g., ENAS [34], and PNAS [27]) on image recognition tasks using CIFAR10 and ImageNet. On both datasets, EPNAS is superior w.r.t. architecture searching speed and recognition accuracymore » « less