skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Baltimore Ecosystem Study: Stream biofilm bacterial community composition
The Baltimore Ecosystem Study stream biofilm bacterial community composition was obtained from 8 long-term sampling network sites in and near the Gwynns Falls watershed to examine how bacterial communities differ along an urban-rural gradient. Sampling was conducted at the same time as stream chemistry sampling on 18 June 2014 and 21 Oct 2014. Note: biofilm samples were taken about 50 meters east from the Carroll Park monitoring station, just under the I95 highway overpass, due to high water depth, high water flow, and lack of rock substrates for sampling. This dataset presents the number of sequences matching the taxonomic classifications in a reference database of 16S rRNA genes. See the full metadata record for detailed methods.  more » « less
Award ID(s):
1855277
PAR ID:
10474677
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Synoptic sampling of streams is an inexpensive way to gain insight into the spatial distribution of dissolved constituents in the subsurface critical zone. Few spatial synoptics have focused on urban watersheds although this approach is useful in urban areas where monitoring wells are uncommon. Baseflow stream sampling was used to quantify spatial variability of water chemistry in a highly developed Piedmont watershed in suburban Baltimore, MD having no permitted point discharges. Six synoptic surveys were conducted from 2014 to 2016 after an average of 10 days of no rain, when stream discharge was composed of baseflow from groundwater. Samples collected every 50 m over 5 km were analyzed for nitrate, sulfate, chloride, fluoride, and water stable isotopes. Longitudinal spatial patterns differed across constituents for each survey, but the pattern for each constituent varied little across synoptics. Results suggest a spatially heterogeneous, three‐dimensional pattern of localized groundwater contaminant zones steadily contributing solutes to the stream network, where high concentrations result from current and legacy land use practices. By contrast, observations from 35 point piezometers indicate that sparse groundwater measurements are not a good predictor of baseflow stream chemistry in this geologic setting. Cross‐covariance analysis of stream solute concentrations with groundwater model/backward particle tracking results suggest that spatial changes in base‐flow solute concentrations are associated with urban features such as impervious surface area, fill, and leaking potable water and sanitary sewer pipes. Predicted subsurface residence times suggest that legacy solute sources drive baseflow stream chemistry in the urban critical zone. 
    more » « less
  2. Roux, Simon (Ed.)
    ABSTRACT We report the genomic sequences of 14 bacterial isolates from a supraglacial stream on the Cotton Glacier, Antarctica. Fine sediments in the streambed provide habitat for bacterial growth and biofilm formation. The stream represents a natural laboratory for studying the evolution and adaptation of microbes to a humic-free environment. 
    more » « less
  3. van_Kessel, Julia C (Ed.)
    ABSTRACT Bacterial motility plays a crucial role in biofilm development, yet the underlying mechanism remains not fully understood. Here, we demonstrate that the flagellum-driven motility ofPseudomonas aeruginosaenhances biofilm formation by altering the orientation of bacterial cells, an effect controlled by shear stress rather than shear rate. By tracking wild-typeP. aeruginosaand its non-motile mutants in a microfluidic channel, we demonstrate that while non-motile cells align with the flow, many motile cells can orient toward the channel sidewalls, enhancing cell surface attachment and increasing biofilm cell density by up to 10-fold. Experiments with varying fluid viscosities further demonstrate that bacterial swimming speed decreases with increasing fluid viscosity, and the cell orientation scales with the shear stress rather than shear rate. Our results provide a quantitative framework to predict the role of motility in the orientation and biofilm development under different flow conditions and viscosities.IMPORTANCEBiofilms are ubiquitous in rivers, water pipes, and medical devices, impacting the environment and human health. While bacterial motility plays a crucial role in biofilm development, a mechanistic understanding remains limited, hindering our ability to predict and control biofilms. Here, we reveal how the motility ofPseudomonas aeruginosa, a common pathogen, influences biofilm formation through systematically controlled microfluidic experiments with confocal and high-speed microscopy. We demonstrate that the orientation of bacterial cells is controlled by shear stress. While non-motile cells primarily align with the flow, many motile cells overcome the fluid shear forces and reorient toward the channel sidewalls, increasing biofilm cell density by up to 10-fold. Our findings provide insights into how bacterial transition from free-swimming to surface-attached states under varying flow conditions, emphasizing the role of cell orientation in biofilm establishment. These results enhance our understanding of bacterial behavior in flow environments, informing strategies for biofilm management and control. 
    more » « less
  4. null (Ed.)
    Background The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. Methods The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. Results High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0–1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. Conclusions These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments. 
    more » « less
  5. Bacterial biofilms are communities of cells adhered to surfaces. These communities represent a predominant form of bacterial life on Earth. A defining feature of a biofilm is the three-dimensional extracellular polymer matrix that protects resident cells by acting as a mechanical barrier to the penetration of chemicals, such as antimicrobials. Beyond being recalcitrant to antibiotic treatment, biofilms are notoriously difficult to remove from surfaces. A promising, but relatively under explored approach to biofilm control, is to disrupt the extracellular polymer matrix by enabling penetration of particles to increase the susceptibility of biofilms to antimicrobials. In this work, we investigate externally imposed chemical gradients as a mechanism to transport polystyrene particles into bacterial biofilms. We show that pre-conditioning the biofilm with a pre-wash step using deionized (DI) water is essential for altering the biofilm so it takes up the micro- and nanoparticles by the application of a further chemical gradient created by an electrolyte. Using different particles and chemicals, we document the transport behavior that leads to particle motion into the biofilm and its further reversal out of the biofilm. Our results demonstrate the importance of chemical gradients in disrupting the biofilm matrix, regulating particle transport in crowded macromolecular environments, and suggest potential applications of particle transport and delivery in other physiological systems. 
    more » « less