Code for analyses presented in: Fork, M.L., J. Fick, A.J. Reisinger, and E.J. Rosi. "Dosing the coast: Leaking sewage infrastructure delivers large annual loads and dynamic mixtures of pharmaceuticals to urban rivers." In press at Environmental Science and Technology. Two markdown files contains code to pre-process other data and to analyze grab samples from BES streams collected weekly from 2 Nov 2017 through 15 Nov 2018 and analyzed for 92 target pharmaceuticals. Data and methods are available via EDI at https://doi.org/10.6073/pasta/36453abc14ce8d6a33711231fdee9792. Briefly, the analyses here: A) examine spatial and temporal variability in pharmaceutical detections and concentrations among 7 BES watersheds, and B) combine measured concentrations at the watershed outlet (GFCP) with USGS streamflow data to estimate annual loads of pharmaceuticals by resampling or by interpolating concentrations over the discharge record.
more »
« less
Baltimore Ecosystem Study: Pharmaceutical concentrations for core sites in Gwynns Falls and Baisman Run
Water samples from one year of weekly samples at the Baltimore Ecosystem Study core stream sites were analyzed to measure concentrations of 92 different pharmaceutical concentrations. Note that none of the sites sampled in this dataset receive effluent from wastewater treatment plants (a common source of pharmaceutical contamination). In Baisman Run, sewage is treated by onsite systems, while in the Gwynns Falls watershed, sewage is piped across the watershed boundary and treated elsewhere.
more »
« less
- Award ID(s):
- 1855277
- PAR ID:
- 10474679
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Better documentation and understanding of long‐term temporal dynamics of nitrogen (N) and phosphorus (P) in watersheds is necessary to support effective water quality management, in part because studies have identified time lags between terrestrial nutrient balances and water quality. We present annual time series data from 1969 to 2012 for terrestrial N and P sources and monthly data from 1972 to 2013 for river N and P for the Willamette River Basin, Oregon, United States. Inputs to the watershed increased by factors of 3 for N and 1.2 for P. Synthetic fertilizer inputs increased in total and relative importance over time, while sewage inputs decreased. For N, increased fertilizer application was not matched by a proportionate increase in crop harvest; N use efficiency decreased from 69% to 38%. P use efficiency increased from 52% to 67%. As nutrient inputs to terrestrial systems increased, river concentrations and loads of total N, total P, and dissolved inorganic P decreased, and annual nutrient loads were strongly related to discharge. The N:P ratio of both sewage and fertilizer doubled over time but there was no similar trend in riverine export; river N:P concentrations declined dramatically during storms. River nutrient export over time was related to hydrology and waste discharge, with relatively little influence of watershed balances, suggesting that accumulation within soils or groundwater over time is mediating watershed export. Simply managing yearly nutrient balances is unlikely to improve water quality; rather, many factors must be considered, including soil and groundwater storage capacity, and gaseous loss pathways.more » « less
-
Langille, Morgan (Ed.)The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess human health status at scales beyond a single host. Analyzing the viral fraction of wastewater in the ongoing COVID-19 pandemic has shown the potential of wastewater as aggregated samples for early detection, prevalence monitoring, and variant identification of human diseases in large populations. However, using census-based population size instead of real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we show that taxon abundance and sub-species diversisty in gut-associated microbiomes are new feature space to utilize for human population estimation. Using a population-scale human gut microbiome sample of over 1,100 people, we found that taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships with respect to human population size. Here and throughout this paper, the human population size is essentially the sample size from the wastewater sample. We present a new algorithm, MicrobiomeCensus, for estimating human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple taxa’s relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in data-driven simulation benchmarks and detected population size differences in field data. New theorems are provided to justify our approach. This research provides a mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more accurate ecological and public health studies utilizing the sewage metagenome.more » « less
-
Aquatic ecosystems are subjected to many chemical stressors, including nutrients and emerging contaminants like pharmaceuticals. While pharmaceutical concentrations in streams and rivers are often below the thresholds for acute toxicity, they nonetheless disrupt ecology through changes to organisms' physiology, metabolism, and behavior. However, analyzing samples for the wide range of manufactured pharmaceuticals is often prohibitively expensive for many monitoring efforts. As such, the ability to predict pharmaceutical concentrations over space and time using easier‐to‐monitor water quality parameters would expand our understanding of the scope and consequences of pharmaceutical contamination in aquatic ecosystems. We applied random forest models to data from the Baltimore Ecosystem Study to investigate how well routinely monitored water quality parameters could be used to predict concentrations of nutrients and pharmaceuticals. We found that concentrations of nutrients were accurately predicted by these models, but models for predicting concentrations of pharmaceuticals had high error rates and low predictive ability. Differences in our ability to predict concentrations of nutrients as opposed to pharmaceuticals could be due to differences in their sources, chemistries, or behavior in the environment. More concerted efforts to monitor pharmaceutical concentrations over time in aquatic ecosystems may help to resolve environmental drivers of their concentration and improve our ability to predict them.more » « less
-
no editor. (Ed.)The Tijuana River Watershed encompasses 1750 square miles of territory in both Mexico and the United States, culminating at the National EstuarineResearch Reserve. While this area comprises one of the largest undisturbed wetlands in the state, it is one of the most polluted rivers in SouthernCalifornia, draining raw sewage and nonpoint source pollution. Despite extensive research, microplastic pollution along the beaches has not been explored. The objective of this study is to determine how the abundance and morphology of microplastic pollution in beach sediments vary with distance along the littoral cell from the Tijuana River outfall. Twenty samples were collected at 10 sites that span from the Tijuana River outfall to Mission Beach, San Diego. They are characterized as outfall sites, low-visitation beaches near the outfall, and high-visitation beaches further from the outfall. Solutions of 100ml sediment and 400ml hyper-saline solution were mixed and settled for 16 hours before being processed using a vacuum filtration system in a laminar fl ow hood. The microplastics (MP)were counted and classified using light microscopy. Laboratory practices to reduce laboratory contamination were employed and analytical blanks were run for every 3 samples. MPs ranged from 1 to 199/100ml sediment, of which approximately 91% were fibers. The greatest MP abundance occurred at the river outfall sites, but recovery rates were highly variable, and the analytical blanks ranged from 3-63/100ml sediment. The results oft his study suggest that microplastic distribution in sandy beach sediments is patchy but higher near the Tijuana River Outfall, and that future studies should report analytical blanks and employ methods to reduce contamination. Understanding the relationship between watersheds and microplastic distributions may inspire policy change on water quality protections in watersheds.more » « less