skip to main content


Title: Baltimore Ecosystem Study: November 21, 2019 Download of TreeBaltimore data in support of Anderson et al 2022, Ecosphere
Tree Baltimore (treebaltimore.org) hired Davey Tree to conduct a census of all publicly owned trees and tree pits in the city of Baltimore. This census was completed by arborists in 2017-2018, documenting over 192,000 trees and potential tree sites that reflect the public component of Baltimore’s urban forest. Entries in this dataset include trees in parkways (street trees), mown areas of public parks (forest patches excluded), meridian trees, and vacant spaces for tree planting. Data is continuously updated and the current vintage can be found at https://baltimore.maps.arcgis.com/apps/webappviewer/index.html?id=d2cfbbe9a24b4d988de127852e6c26c8.  more » « less
Award ID(s):
1855277
NSF-PAR ID:
10474691
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tree canopy cover is a critical component of the urban environment that supports ecosystem services at multiple spatial and temporal scales. Increasing tree canopy across a matrix of public and private land is challenging. As such, municipalities often plant trees along streets in public rights‐of‐way where there are fewer barriers to establishment, and composition and biomass of street trees are inextricably linked to human decisions, management, and care. In this study, we investigated the contributions of street trees to the broader urban forest, inclusive of tree canopy distributed across both public and private parcels in Baltimore, MD, USA. We assess how species composition, biodiversity, and biomass of street trees specifically augment the urban forest at local and citywide scales. Furthermore, we evaluate how street tree contributions to the urban forest vary with social and demographic characteristics of local residential communities. Our analyses demonstrate that street trees significantly enhanced citywide metrics of the urban forests' richness and tree biomass, adding an average six unique species per site. However, street tree contributions did not ameliorate low tree canopy locations, and more street tree biomass was generally aligned with higher urban forest cover. Furthermore, species richness, abundance, and biomass added by street trees were all positively related to local household income and population density. Our results corroborate previous findings that wealthier urban neighborhoods often have greater tree abundance and canopy cover and, additionally, suggest that investment in municipally managed street trees may be reinforcing inequities in distribution and function of the urban forest. This suggests a need for greater attention to where and why street tree plantings occur, what species are selected, and how planted tree survival is maintained by and for residents in different neighborhoods.

     
    more » « less
  2. Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163. 
    more » « less
  3. Abstract

    Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three‐city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban–rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree‐planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.

     
    more » « less
  4. Abstract

    Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old‐growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5‐year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1‐m2seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1‐m2seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially‐explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly‐available, long‐term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non‐commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set.

     
    more » « less
  5. Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. 
    more » « less