skip to main content


Title: Long-term seedling and small sapling census data from the Barro Colorado Island 50 ha Forest Dynamics Plot, Panama
Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography.  more » « less
Award ID(s):
1845403
NSF-PAR ID:
10498496
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Dryad
Date Published:
Subject(s) / Keyword(s):
["Advanced regeneration","Barro Colorado Island (BCI)","Forest Dynamics Plot (FDP)","ForestGEO","Panama","regeneration niche","seedling bank","Seedling recruitment","seedling survival","Species coexistence","Tropical forests","FOS: Natural sciences"]
Format(s):
Medium: X Size: 10662491 bytes
Size(s):
["10662491 bytes"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old‐growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5‐year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1‐m2seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1‐m2seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially‐explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly‐available, long‐term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non‐commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set.

     
    more » « less
  2. Abstract

    Over the past decades, tropical forests have experienced both compositional and structural changes. In the Neotropics, researchers at multiple sites have observed significant increases in the abundance and biomass of lianas (i.e. woody vines) relative to trees. However, the role of dynamics at early life stages in contributing to increasing liana abundance remains unclear.

    We took advantage of a unique dataset on seedling dynamics over 16 years in ~20 000 1‐m2plots in a tropical forest in Panama to examine temporal and spatial trends in liana and tree seedling abundance.

    We found that the relative abundance of liana seedlings increased across the study period, from 0.18 in 2001 to 0.24 in 2017. However, increases in liana seedling relative abundance appear to have levelled off in more recent years. The observed increases in liana relative abundance appear to be the result of both higher survival and higher recruitment rates of liana seedlings compared to tree seedlings.

    Increasing liana abundance in the seedling layer was not explained by annual variation in dry season length, total rainfall or the proportion of area occupied by canopy gaps. In addition, liana seedlings did not exhibit a demographic advantage (i.e. higher recruitment or survival) over tree seedlings in dry habitats.

    Synthesis.Our results reveal that seedling communities experienced important compositional changes in the past, but liana seedling relative abundance may have stabilized in recent years. Longer‐term monitoring is needed to determine whether tropical forests will continue to experience compositional changes that may alter forest structure and ecosystem function.

     
    more » « less
  3. Marked seedlings. Our dataset includes 1463 marked individual oak seedlings in 535 5m2 plots over the 20 transects. Overall, oak seedlings occurred in a third of the searched plots. Most plots had only one seedling (236 plots) and only 3% (16 plots) of the plots had 10 or more seedlings, with a maximum density of 3.4 seedlings m2. Cohort years 2011, 2015, 2017 and 2022 had a greater influx of seedlings, and our oldest seedling is estimated to be 30 years or older. For seedlings where initial height was measured in their year of germination (i.e., in 2011 or later) mean initial seedling height was 14.8 cm (SD = 6.51 cm) and there was a small but significant decline in initial seedling height with time (-0.23 cm/year, F1,1298 = 19.97, p=<0.0001). The size of first year seedlings as measured by both initial height (F1,760 = 25.2, p<0.001) and leaf number (F1,752 = 11.1, p=0.009) increased on average with distance into the valley. The mean distance of oak seedlings into the valley has not increased over the course of the study and remains centered around 800m from the east entrance. Plot environment. Study transects encompassed a full range of topographic positions in the lower valley. Hemlock dominance ranged from absent (5 transects) to dominant (greater than 50% of trees; 3 transects). Tree basal area around the plots ranged from 18.8 – 43.5 m2 ha-1. Light transmission was universally low (all ≤13% TT). Light transmission (F1,5916 = 139.3; r2: 0.157, p<0.0001), hemlock dominance (F1,5916 = 2024; r2: 0.255, p<0.0001), and oak seedling density (F1,5916 = 73.9; r2: 0.126, p<0.0001) all decreased with distance further west into the valley. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Abstract Questions

    How do spatial patterns of tree distribution and species co‐occurrence differ between primary and secondary tropical rain forests? What signatures of ecological processes might be discerned by comparing the spatial patterns of trees between primary and secondary forest plots?

    Location

    Tropical rain forest vegetation, lowlands of Papua New Guinea.

    Methods

    All trees over 5 cm DBH were surveyed in two non‐replicated 1‐ha plots situated in primary and secondary forest. Grid location, DBH, height and species identity were recorded for all surveyed trees. Analysis of the spatial pattern and the autocorrelation of tree sizes and identities were used to assess the structure of the forest found within the plots. Functions combining Ripley's K and the individual species–area relationship were applied to study the spatial distribution of trees and species diversity.

    Results

    The spatial distribution of common species, and all stems collectively, was aggregated in the secondary forest plot but not different from random in the primary forest plot. Diameter and height were also strongly spatially auto‐correlated in the secondary forest plot but not in the primary forest plot. Conspecific aggregations were more common in the secondary forest plot. Finally, the secondary forest plot was characterized by the presence of diversity‐repelling species and lower diversity than the primary forest plot, where diversity‐accumulating species were present.

    Conclusions

    We attribute the weaker autocorrelation of tree size in the primary forest to the development of size hierarchies throughout the course of stand aging. The conspecific aggregation and low local diversity within the secondary forest plot are likely caused by dispersal limitation during a brief period of establishment after disturbance. The higher local diversity of the primary forest can be explained by the reduction of species aggregation through increased mortality of conspecifics. This is caused by strong intraspecific competition, supporting the spatial segregation hypothesis (interspecific spatial segregation).

     
    more » « less
  5. Abstract

    Tropical forests are notable for their high species diversity, even on small spatial scales, and right‐skewed species and size abundance distributions. The role of individual species as drivers of the spatial organization of diversity in these forests has been explained by several hypotheses and processes, for example, stochastic dilution, negative density dependence, or gap dynamics. These processes leave a signature in spatial distribution of small trees, particularly in the vicinity of large trees, likely having stronger effects on their neighbors. We are exploring species diversity patterns within the framework of various diversity‐generating hypotheses using individual species–area relationships. We used the data from three tropical forest plots (Wanang—Papua New Guinea, Barro Colorado Island—Panama, and Sinharaja—Sri Lanka) and included also the saplings (DBH ≥ 1 cm). Resulting cross‐size patterns of species richness and evenness reflect the dynamics of saplings affected by the distribution of large trees. When all individuals with DBH ≥1 cm are included, ~50% of all tree species from the 25‐ or 50‐ha plot can be found within 35 m radius of an individual tree. For all trees, 72%–78% of species were identified as species richness accumulators, having more species present in their surroundings than expected by null models. This pattern was driven by small trees as the analysis of DBH >10 cm trees showed much lower proportion of accumulators, 14%–65% of species identified as richness repellers and had low richness of surrounding small trees. Only 11%–26% of species had lower species evenness than was expected by null models. High proportions of species richness accumulators were probably due to gap dynamics and support Janzen–Connell hypothesis driven by competition or top‐down control by pathogens and herbivores. Observed species diversity patterns show the importance of including small tree size classes in analyses of the spatial organization of diversity.

     
    more » « less