skip to main content


Title: Baltimore Ecosystem Study: Stewardship Mapping And Assessment Project (STEW-MAP) survey results 2011 and 2019
Addressing the challenges of sustainable and equitable city management in the 21st century requires innovative solutions and integration from a range of dedicated actors. In order to form and fortify partnerships of multi-sectoral collaboration, expand effective governance, and build collective resiliency it is important to understand the network of existing stewardship organizations. The term ‘stewardship’ encompasses a spectrum of local agents dedicated to the evolving process of community care and restoration. Groups involved in stewardship across Baltimore are catalysts of change through a variety of conservation, management, monitoring, transformation, education, and advocacy activities for the local environment – many with common goals of joint resource management, distributive justice, and community power sharing. The “environment” here is intentionally broadly defined as land, air, water, energy and more. The Stewardship Mapping and Assessment Project (STEW-MAP) is a method of data collection and visualization that tracks the characteristics of organizations and their financial and informational flows across sectors and geographic boundaries. The survey includes questions about three facets of environmental stewardship groups: 1) organizational characteristics, 2) collaboration networks, and 3) stewardship “turfs” where each organization works. The data have been analyzed alongside landcover and demographic data and used in multi-city studies incorporating similar datasets across major urban areas of the U.S. Additional information about the growing network of cities conducting stewmap can be found here: https://www.nrs.fs.usda.gov/STEW-MAP/ Romolini, Michele; Grove, J. Morgan; Locke, Dexter H. 2013. Assessing and comparing relationships between urban environmental stewardship networks and land cover in Baltimore and Seattle. Landscape and Urban Planning. 120: 190-207. https://www.fs.usda.gov/research/treesearch/44985 Johnson, M., D. H. Locke, E. Svendsen, L. Campbell, L. M. Westphal, M. Romolini, and J. Grove. 2019. Context matters: influence of organizational, environmental, and social factors on civic environmental stewardship group intensity. Ecology and Society 24(4): 1. https://doi.org/10.5751/ES-10924-240401 Ponte, S. 2023. Social-ecological processes and dynamics of urban forests as green stormwater infrastructure in Maryland, USA. Doctoral dissertation, University of Maryland, College Park, MD.  more » « less
Award ID(s):
1855277
NSF-PAR ID:
10474696
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: One-meter soil cores were taken to evaluate soil texture, bulk density, carbon and nitrogen pools, microbial biomass carbon and nitrogen content, microbial respiration, potential net nitrogen mineralization, potential net nitrification and inorganic nitrogen pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to soils from 8 forested reference sites. Purpose: Soil cores were obtained from residential and forest sites in the Baltimore, MD USA metropolitan area. The residential sites were mostly within the Gwynns Falls Watershed (-76.012008W, -77.314183E, 39.724847N, 38.708367S and approximately 17 km2) Lawns on residential sites were dominated by a variety of cool season turfgrasses. Forest soil cores were taken from permanent forest plots of the Baltimore Ecosystem Study (BES) LTER (Groffman et al. 2006). These remnant forests are over 100 years old with soils that were comparable in type and texture to those underlying the residential study sites. Soils from all sites were from the Manor series (coarse-loamy, micaceous, mesic Typic Dystrudepts), which are well-drained upland soils with loamy textures and bedrock at 5 to 10 feet below the soil surface. To aid the site selection process we used neighborhoods in the Baltimore City metropolitan area that have been mapped using HERCULES, a high resolution land cover classification system designed to assist in the study of human-ecological systems (Cadenasso et al. 2007). Using HERCULES and additional data sources, we identified residential sites that were similar except for single factors that we hypothesized to be important predictors of ecosystem dynamics. These factors included land use history (agriculture and forest, n = 10 and n = 22), housing density (low and medium/high, n = 9 and n = 23), and housing age (4 to 58 yrs old, n = 32). Housing age was acquired from the Maryland Property View database. Prior land use was determined based on land use change maps developed by integrating aerial photos from 1938, 1957, 1971, and 1999 into a geographic information system. Once a list of residential parcels meeting the predefined criteria were identified, we sent mailings to property owners chosen at random from each of the factor groups with the goal of recruiting 40 property owners for a 3 year study (of which this work is a part). We had recruited 32 property owners at the time that soil cores were obtained. Data have been published in Raciti et al. (2011a, 2011b) References Cadenasso, M. L., S. T. A. Pickett, and K. Schwarz. 2007. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment 5:80-88. Groffman, P. M., R. V. Pouyat, M. L. Cadenasso, W. C. Zipperer, K. Szlavecz, I. D. Yesilonis, L. E. Band, and G. S. Brush. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, and T. J. Fahey. 2011a. Controls on nitrate production and availability in residential soils. Ecological Applications:In press. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, T. J. Fahey, M. L. Cadenasso, and S. T. A. Pickett. 2011b. Accumulation of carbon and nitrogen in residential soils with different land use histories. Ecosystems 14:287-297. 
    more » « less
  2. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. Data from these plots has been published in Groffman et al. (2006, 2009) and Groffman and Pouyat (2009). In November of 1998 four rural, forested plots were established at Oregon Ridge Park in Baltimore County northeast of the Gwynns Falls Watershed. Oregon Ridge Park contains Pond Branch, the forested reference watershed for BES. Two of these four plots are located on the top of a slope; the other two are located midway up the slope. In June of 2010 measurements at the mid-slope sites on Pond Branch were discontinued. Monuments and equipment remain at the two plots. These plots were replaced with two lowland riparian plots; Oregon upper riparian and Oregon lower riparian. Each riparian sites has four 5 cm by 1-2.5 meter depth slotted wells laid perpendicular to the stream, four tension lysimeters at 10 cm depth, five time domain reflectometry probes, and four trace gas flux chambers in the two dominant microtopographic features of the riparian zones - high spots (hummocks) and low spots (hollows). Four urban, forested plots were established in November 1998, two at Leakin Park and two adjacent to Hillsdale Park in west Baltimore City in the Gwynns Falls. One of the plots in Hillsdale Park was abandoned in 2004 due to continued vandalism. In May 1999 two grass, lawn plots were established at McDonogh School in Baltimore County west of the city in the Gwynns Falls. One of these plots is an extremely low intensity management area (mowed once or twice a year) and one is in a low intensity management area (frequent mowing, no fertilizer or herbicide use). In 2009, the McDonogh plots were abandoned due to management changes at the school. Two grass lawn plots were established on the campus of the University of Maryland, Baltimore County (UMBC) in fall 2000. One of these plots is in a medium intensity management area (frequent mowing, moderate applications of fertilizer and herbicides) and one is in a high intensity management area (frequent mowing, high applications of fertilizer and herbicides). Literature Cited Bowden R, Steudler P, Melillo J and Aber J. 1990. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. Res.-Atmos. 95, 13997 14005. Driscoll CT, Fuller RD and Simone DM (1988) Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual. 17: 101-107 Goldman, M. B., P. M. Groffman, R. V. Pouyat, M. J. McDonnell, and S. T. A. Pickett. 1995. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology and Biochemistry 27:281-286. Groffman PM, Holland E, Myrold DD, Robertson GP and Zou X (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 272-290). Oxford University Press, New York Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Holland EA, Boone R, Greenberg J, Groffman PM and Robertson GP (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ and. Harris D. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification and carbon turnover. In: Standard Soil Methods for Long Term Ecological Research (Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480." 
    more » « less
  3. Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163. 
    more » « less
  4. This is a subset of the data found in Grove and Locke (2018), to be included with: Locke, D.H., Polsky, C., Grove, J. M., Groffman, P. M., Nelson, K.C., Larson, K. L., Cavender-Bares, J., Heffernan, J. B., Roy Chowdhury, R., Hobbie, S. E., Bettez, N., Neill, C., Ogden, L.A., O’Neil-Dunne, J. P. M.. [accepted]. Heterogeneity of practice underlies the homogeneity of ecological outcomes of United States yard care in metropolitan regions, neighborhoods and households. PLoS ONE doi:10.1371/journal.pone.0222630 These data contain answers 2011 survey questions: In the past year, which of the following has been applied to any part of your yard: Water for irrigating grass, plants, or trees? Fertilizers? Pesticides to get rid of weeds or pests? The total household annual income (8 ordinal categories), age of respondent (5 ordinal categories), and the answer to: About how many neighbors do you know by name? (recorded in 5 ordinal categories). Two additional columns are provided to indicate the metropolitan region of the respondent (one of the following six: Phoenix, Los Angeles, Minneapolis - St. Paul, Baltimore, Boston, or Miami) and the degree of urbanicity in that region (Urban, Suburban, or Exurban). See Grove and Locke 2018 for additional details. This research is supported by the Macro- Systems Biology Program (US NSF) under Grants EF-1065548, -1065737, -1065740, -1065741, -1065772, -1065785, -1065831, and -121238320 and the NIFA McIntire-Stennis 1000343 MIN-42-051. The work arose from research funded by grants from the NSF LTER program for Baltimore (DEB- 0423476, DEB-1027188); Phoenix (BCS-1026865, DEB-0423704, DEB-9714833, DEB-1637590, DEB-1832016); Plum Island, Boston (OCE-1058747 and 1238212); Cedar Creek, Minneapolis–St. Paul (DEB- 0620652); and Florida Coastal Everglades, Miami (DBI-0620409). Edna Bailey Sussman Foundation, Libby Fund Enhancement Award and the Marion I. Wright ‘46 Travel Grant at Clark University, The Warnock Foundation, the USDA Forest Service Northern Research Station, Baltimore and Philadelphia Field Stations, and the DC-BC ULTRA-Ex NSF-DEB-0948947 also provided support. This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1052875. Anonymous reviewers supplied constructive feedback that helped to improve this paper. The findings and opinions reported here do not necessarily reflect those of the funders of this research. Citations: Grove J.M., Locke, D.H.. (2018). BES Household Telephone Survey. Environmental Data Initiative. https://doi.org/10.6073/pasta/5a4fc7bfa199f3d63748f0853ae073a0. 
    more » « less
  5. The Baltimore Ecosystem Study (BES) established a network of long-term permanent biogeochemical study plots in 1998. These plots provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The network of study plots includes forest plots (upland and riparian), chosen to represent the range of forest conditions in the area and grass plots (to represent home lawns). Plots are instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature, and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998 and 2015. Data from these plots has been published in Groffman et al. (2006, 2009), Groffman and Pouyat (2009), Savva et al. (2010), Costa and Groffman (2013), Duncan et al. (2013), Waters et al. (2014), Ni and Groffman (2018), Templeton et al. (2019). Literature Cited Costa, K.H. and P.M. Groffman. 2013. Factors regulating net methane flux in urban forests and grasslands. Soil Science Society of America Journal 77:850 - 855. Duncan, J. M., L. E. Band, and P. M. Groffman. 2013. Towards closing the watershed nitrogen budget: Spatial and temporal scaling of denitrification. Journal of Geophysical Research Biogeosciences 118:1-5; DOI: 10.1002/jgrg.20090 Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Ni, X. and P.M. Groffman. 2018. Declines in methane uptake in forest soils. Proceedings of the National Academies of Science of the United States of America 115:8587-8590. Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480. Templeton, L., M.L. Cadenasso, J. Sullivan, M. Neel and P.M. Groffman. 2019. Changes in vegetation structure and composition of urban and rural forest patches in Baltimore from 1998 to 2015. Forest Ecology and Management. In press. Waters, E.R., J.L. Morse, N.D. Bettez and P.M. Groffman. 2014. Differential carbon and nitrogen controls of denitrification in riparian zones and streams along an urban to exurban gradient. Journal of Environmental Quality 43:955–963. 
    more » « less