skip to main content


This content will become publicly available on November 14, 2024

Title: Plasma Radicals as Kinetics-Controlling Species during Plasma-Assisted Catalytic NH 3 Formation: Support from Microkinetic Modeling
Award ID(s):
1921484
NSF-PAR ID:
10474714
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Sustainable Chemistry & Engineering
ISSN:
2168-0485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer. 
    more » « less
  2. Abstract

    Terahertz spectroscopy of thec‐axis Josephson plasma resonance (JPR) in high‐temperature cuprates is a powerful probe of superconductivity, providing a route to couple to and interact with the condensate. Electromagnetic coupling between metasurface arrays of split ring resonators (SRRs) and the JPR of a La2−xSrxCuO4single crystal (Tc= 32 K) is investigated. The metasurface resonance frequency (ωMM), determined by the SRR geometry, is swept through the JPR frequency (ωJPR= 1.53 THz) using a series of interchangeable tapes applied to the same single crystal. Terahertz reflectivity measurements on the resulting hybrid superconducting metamaterials (HSMMs) reveal anticrossing behavior characteristic of strong coupling. The experimental results, validated with numerical simulations, indicate a normalized Rabi frequency of ΩR= 0.29. Further, it is shown that HSMMs with ωMM> ωJPRprovide a route to couple to hyperbolic waveguide modes inc‐axis cuprate samples. This work informs future possibilities for optimizing the coupling strength of HSMMs and investigating nonlinear superconductivity under high field terahertz excitation.

     
    more » « less