skip to main content

Title: Plasma-droplet interaction study to assess transport limitations and the role of OH, O ,H ,O 2 (a 1 Δ g ),O 3 , He(2 3 S) and Ar(1s 5 ) in formate decomposition
Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a more » significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer. « less
Authors:
; ; ; ;
Award ID(s):
1903151
Publication Date:
NSF-PAR ID:
10382512
Journal Name:
Plasma Sources Science and Technology
Volume:
30
Issue:
11
Page Range or eLocation-ID:
115003
ISSN:
0963-0252
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation of a suite of isoprene-derived hydroxy nitrate (IHN) isomers during the OH-initiated oxidation of isoprene affects both the concentration and distribution of nitrogen oxide free radicals (NOx). Experiments performed in an atmospheric simulation chamber suggest that the lifetime of the most abundant isomer, 1,2-IHN, is shortened significantly by a water-mediated process (leading to nitric acid formation), while the lifetime of a similar isomer, 4,3-IHN, is not. Consistent with these chamber studies, NMR kinetic experiments constrain the 1,2-IHN hydrolysis lifetime to less than 10 s in deuterium oxide (D2O) at 298 K, whereas the 4,3-IHN isomer has been observed to hydrolyze much less efficiently. These laboratory findings are used to interpret observations of the IHN isomer distribution in ambient air. The IHN isomer ratio (1,2-IHN to 4,3-IHN) in a high NOxenvironment decreases rapidly in the afternoon, which is not explained using known gas-phase chemistry. When simulated with an observationally constrained model, we find that an additional loss process for the 1,2-IHN isomer with a time constant of about 6 h best explains our atmospheric measurements. Using estimates for 1,2-IHN Henry’s law constant and atmospheric liquid water volume, we show that condensed-phase hydrolysis of 1,2-IHN can account for this lossmore »process. Simulations from a global chemistry transport model show that the hydrolysis of 1,2-IHN accounts for a substantial fraction of NOxlost (and HNO3produced), resulting in large impacts on oxidant formation, especially over forested regions.

    « less
  2. We present a new chemical mechanism for Hg(0)/ Hg(I) / Hg(II) atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg(0) by Br atoms and OH radicals, with subsequent oxidation of Hg(I) by ozone and radicals, re-speciation of gaseous Hg(II) in aerosols and cloud droplets, and speciated Hg(II) photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg(0) concentrations and Hg(II) wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg(0) to Hg(II). Ozone is the principal Hg(I) oxidant, enabling the efficient oxidation of Hg(0) to Hg(II) by OH. BrHgOH and Hg(OH)2 are the initial Hg(II) products of Hg0 oxidation, re-speciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of Hg(II) to Hg(0) takes place largely through photolysis of aqueous Hg(II)-organic complexes. 71% of model Hg(II) deposition is to the oceans. Major mechanism uncertainties for atmospheric Hg chemistry modeling include the concentrations of Br atoms, the stability andmore »reactions of Hg(I), and the speciation of Hg(II) in aerosols and clouds with implications for photoreduction.« less
  3. Organic peroxy radicals (RO2) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2and gas-phase dimers from O3-initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16–20H24–34O4–13) are primarily formed through RO2cross-reactions, with a typical rate constant of 0.75–2 × 10−12cm3molecule−1s−1and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2–2.5% by mole (0.5–6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16–20dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5–60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2, dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2from OH reaction and 10% from ozonolysis autoxidize at 3–10 s−1and ≥1more »s−1, respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth.

    « less
  4. Decavanadate (V 10 O 28 6− or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared bymore »other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V 10 O 26 2− anion was displayed in the negative-ion ESI mass spectra. None of the V 10 O 26 cations were detected in ESI MS, and only a low-abundance signal was observed for V 10 O 26 anions with a single negative charge, indicating that the presence of abundant V 10 O 26 2− anions in ESI MS reflects gas-phase instability of V 10 O 28 anions carrying two charges. The gas-phase origin of the V 10 O 26 2− anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H 4 V 10 O 28 2− ), resulting in a facile loss of H 2 O molecules and giving rise to V 10 O 26 2− as the lowest-mass fragment ion. Water loss was also observed for V 10 O 28 anions carrying an odd number of hydrogen atoms ( e.g. , H 5 V 10 O 28 − ), followed by a less efficient and incomplete removal of an OH˙ radical, giving rise to both HV 10 O 26 − and V 10 O 25 − fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase.« less
  5. Sea spray aerosols contain a large array of organic compounds that contribute to high viscosities at low relative humidity and temperature thereby slowing translational diffusion of water. The Stokes-Einstein equation describes how viscosity is inversely correlated with the translational diffusion coefficient of the diffusing species. However, recent studies indicate the Stokes-Einstein equation breaks down at high viscosities achieved in the particle phase (>10 12 Pa·s), underestimating the predicted water diffusion coefficient by orders of magnitude and revealing the need for directly studying the diffusion of water in single aerosol. A new method is reported for measuring the water diffusion coefficient in single suspended charged sucrose-water microdroplets in the 30-60 micron diameter range. The translational water diffusion coefficient is quantified using H 2 O/D 2 O isotope exchange technique between 26-54% relative humidity (RH) with a recently developed mobile electrodynamic balance apparatus. The results are in good agreement with literature, particularly the Vignes-type parameterization from experiments using isotope exchange and optical tweezers. This mobile electrodynamic balance will allow future studies of atmospherically relevant chemical systems, including field studies.