skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A designer’s challenge: Unraveling the architected structure of deep sea sponges for lattice mechanical metamaterials
Biomimetic and Bioinspired designs have been investigated due to the advances in modeling, mechanics and experimental characterization of structural features of living organisms. To accomplish bioinspiration for fields such as robotics, adhesives and smart materials, it is required to comprehend how Nature accomplished enhanced mechanical behavior. Among the plethora of complex organisms spanning at different lengthscales, the deep sea sponge Euplectella Aspergillum has been of particular interest due to its lattice structure that can be the framework to design mechanical metamaterials. However, despite its intriguing morphology, constraints in the fabrication and modeling of scalable and nonuniform materials has hindered the study of its mechanical performance and how to harness it. Moreover, a comprehensive FEA model that encompasses the whole spectrum of its constitutive and structural performance has not been reported. In this study, it is aimed to characterize and model the mechanical behavior of this sponge from a structural standpoint. Utilizing various experimental techniques, an FEA mechanical model is developed to study the nonlinear buckling analysis of the sponge’s lattice structure and its resilience to failure. Finally, through topology optimization and sensitivity analysis, a new mechanical metamaterial is proposed. Our results elucidate how mechanical characterization and FEA modeling can be employed for a deeper understanding of Nature’s tailored hierarchy and the design of metamaterials.  more » « less
Award ID(s):
2134534
PAR ID:
10474763
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Extreme Mechanics Letters
Volume:
61
Issue:
C
ISSN:
2352-4316
Page Range / eLocation ID:
102013
Subject(s) / Keyword(s):
Hierarchical mechanical behavior Bioinspired design In situ SEM microindentation Atomic force microscopy FEA modeling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple properties, such as optimal isotropic and auxetic characteristics, remains challenging. This paper introduces a systematic design approach that combines modeling, FEA, genetic algorithm, and optimization to create tailored mechanical behavior in metamaterials. Through strategically arranging 8 distinct neither isotropic nor auxetic unit cell states, the stiffness tensor in a 5 × 5 × 5 cubic symmetric lattice structure is controlled. Employing the NSGA-II genetic algorithm and automated modeling, we yield metamaterial lattice structures possessing both desired isotropic and auxetic properties. Multiphoton lithography fabrication and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close correlation between theoretical and experimental data. 
    more » « less
  2. Architected metamaterials have emerged as a central topic in materials science and mechanics, thanks to the rapid development of additive manufacturing techniques, which have enabled artificial materials with outstanding mechanical properties. This Letter seeks to investigate the elastodynamic behavior of octet truss lattices as an important type of architected metamaterials for high effective strength and vibration shielding. We design, fabricate, and experimentally characterize three types of octet truss structures, including two homogenous structures with either thin or thick struts and one hybrid structure with alternating strut thickness. High elastic wave transmission rate is observed for the lattice with thick struts, while strong vibration mitigation is captured from the homogenous octet truss structure with thin struts as well as the hybrid octet truss lattice, though the underlying mechanisms for attenuation are fundamentally different (viscoelasticity induced dampening vs bandgaps). Compressional tests are also conducted to evaluate the effective stiffness of the three lattices. This study could open an avenue toward multifunctional architected metamaterials for vibration shielding with high mechanical strength. 
    more » « less
  3. Abstract For artificial materials, desired properties often conflict. For example, engineering materials often achieve high energy dissipation by sacrificing resilience and vice versa, or desired auxeticity by losing their isotropy, which limits their performance and applications. To solve these conflicts, a strategy is proposed to create novel mechanical metamaterial via 3D space filling tiles with engaging key‐channel pairs, exemplified via auxetic 3D keyed‐octahedron–cuboctahedron metamaterials. This metamaterial shows high resilience while achieving large mechanical hysteresis synergistically under large compressive strain. Especially, this metamaterial exhibits ideal isotropy approaching the theoretical limit of isotropic Poisson's ratio, ‐1, as rarely seen in existing 3D mechanical metamaterials. In addition, the new class of metamaterials provides wide tunability on mechanical properties and behaviors, including an unusual coupled auxeticity and twisting behavior under normal compression. The designing methodology is illustrated by the integral of numerical modeling, theoretical analysis, and experimental characterization. The new mechanical metamaterials have broad applications in actuators and dampers, soft robotics, biomedical materials, and engineering materials/systems for energy dissipation. 
    more » « less
  4. Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpenetrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young’s modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC structural design and related composite designs for desired mechanical properties. 
    more » « less
  5. The Auxetic materials are structural systems with a negative Poisson’s ratio. Such materials show unexpected behavior when subjected to uni-axial compression or tension forces. For instance, they expand perpendicular to the direction of an applied compressive force. This behavior is the result of their internal structural geometry. These materials, with their unique behavior, have recently found many applications in the fields of sensors, medical devices, sport wears, and aerospace. Thus, there is a lot of relevant research in the artificial design of auxetic metamaterials and the prediction of their behavior [2]. Since the behavior of these materials heavily relies on the geometry of their internal structure, the geometry-based methods of structural design, known as graphic statics, are very well suited to derive their geometry or describe their behavior. Nevertheless, graphic statics has never been used in the design of such materials. For the first time, this paper provides an introduction to the use of graphic statics in the design and form-finding of auxetic metamaterials. The paper explains multiple equilibrium states of various auxetic structures using algebraic formulations of 2d/3d graphic statics [1, 3]. Moreover, it sheds light on the geometric behavior of auxetic materials by changing the force diagram of graphic statics. Therefore, it suggests a novel approach in predicting the changes in the geometry of the material under various loading conditions by controlling the force equilibrium geometrically. 
    more » « less