skip to main content


Title: Application of LiDAR Derived Fuel Cells to Wildfire Modeling at Laboratory Scale

Terrestrial LiDAR scans (TLS) offer a rich data source for high-fidelity vegetation characterization, addressing the limitations of traditional fuel sampling methods by capturing spatially explicit distributions that have a significant impact on fire behavior. However, large volumes of complex, high resolution data are difficult to use directly in wildland fire models. In this study, we introduce a novel method that employs a voxelization technique to convert high-resolution TLS data into fine-grained reference voxels, which are subsequently aggregated into lower-fidelity fuel cells for integration into physics-based fire models. This methodology aims to transform the complexity of TLS data into a format amenable for integration into wildland fire models, while retaining essential information about the spatial distribution of vegetation. We evaluate our approach by comparing a range of aggregate geometries in simulated burns to laboratory measurements. The results show insensitivity to fuel cell geometry at fine resolutions (2–8 cm), but we observe deviations in model behavior at the coarsest resolutions considered (16 cm). Our findings highlight the importance of capturing the fine scale spatial continuity present in heterogeneous tree canopies in order to accurately simulate fire behavior in coupled fire-atmosphere models. To the best of our knowledge, this is the first study to examine the use of TLS data to inform fuel inputs to a physics based model at a laboratory scale.

 
more » « less
Award ID(s):
2119689
PAR ID:
10474966
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Williamson, Grant
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Fire
Volume:
6
Issue:
10
ISSN:
2571-6255
Page Range / eLocation ID:
394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fire-prone landscapes found throughout the world are increasingly managed with prescribed fire for a variety of objectives. These frequent low-intensity fires directly impact lower forest strata, and thus estimating surface fuels or understory vegetation is essential for planning, evaluating, and monitoring management strategies and studying fire behavior and effects. Traditional fuel estimation methods can be applied to stand-level and canopy fuel loading; however, local-scale understory biomass remains challenging because of complex within-stand heterogeneity and fast recovery post-fire. Previous studies have demonstrated how single location terrestrial laser scanning (TLS) can be used to estimate plot-level vegetation characteristics and the impacts of prescribed fire. To build upon this methodology, co-located single TLS scans and physical biomass measurements were used to generate linear models for predicting understory vegetation and fuel biomass, as well as consumption by fire in a southeastern U.S. pineland. A variable selection method was used to select the six most important TLS-derived structural metrics for each linear model, where the model fit ranged in R2 from 0.61 to 0.74. This study highlights prospects for efficiently estimating vegetation and fuel characteristics that are relevant to prescribed burning via the integration of a single-scan TLS method that is adaptable by managers and relevant for coupled fire–atmosphere models.

     
    more » « less
  2. Disturbance events can happen at a temporal scale much faster than wildland fire fuel data updates. When used as input for wildland fire behavior models, outdated fuel datasets can contribute to misleading forecasts, which have implications for operational firefighting, mitigation, and wildland fire research. Remote sensing and machine learning methods can provide a solution for on-demand fuel estimation. Here, we show a proof of concept using C-band synthetic aperture radar and multispectral imagery, land cover classes, and tree mortality surveys to train a random forest classifier to estimate wildland fire fuel data in the East Troublesome Fire (Colorado) domain. The algorithm classified over 80% of the test dataset correctly, and the resulting wildland fire fuel data was used to simulate the East Troublesome Fire using the coupled atmosphere—wildland fire behavior model, WRF-Fire. The simulation using the modified fuel inputs, where 43% of original fuels are replaced with fuels representing dead trees, improved the burn area forecast by 38%. This study demonstrates the need for up-to-date fuel maps available in real time to provide accurate prediction of wildland fire spread, and outlines the methodology based on high-resolution satellite observations and machine learning that can accomplish this task. 
    more » « less
  3. Abstract

    Characterizing pre‐fire fuel load and fuel consumption are critical for assessing fire behavior, fire effects, and smoke emissions. Two approaches for quantifying fuel load are airborne laser scanning (ALS) and the Fuel Characteristic Classification System (FCCS). The implementation of multitemporal ALS (i.e., the use of two or more ALS datasets across time at a given location) in conjunction with empirical models trained with field data can be used to measure fuel and estimate fuel consumption from a fire. FCCS, adapted for use in LANDFIRE (LF), provides 30 m resolution estimates of fuel load across the contiguous United States and can be used to estimate fuel consumption through software programs such as Fuel and Fire Tools (FFT). This study compares the two approaches for two wildfires in the northwestern United States having predominantly sagebrush steppe and ponderosa pine savanna ecosystems. The results showed that the LF FCCS approach yielded higher pre‐fire fuel loads and fuel consumption than the ALS approach and that the coarser scale LF FCCS data did not capture as much heterogeneity as the ALS data. At Tepee, 50.0% of the difference in fuel load and 87.3% of the difference in fuel consumption were associated with distinguishing sparse trees from rangeland. At Keithly, this only accounted for 8.2% and 8.6% of the differences, demonstrating the significance of capturing heterogeneity in rangeland vegetation structure and fire effects. Our results suggest future opportunities to use ALS data to better parametrize fine‐scale fuel load variability that LF FCCS does not capture.

     
    more » « less
  4. Abstract

    Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world.

     
    more » « less
  5. Wildland firefighters must be able to maintain situational awareness to ensure their safety. Crew members, including lookouts and crew building handlines, rely on visibility to assess risk and communicate changing conditions. Geographic information systems and remote sensing offer potential solutions for characterizing visibility using models incorporating terrain and vegetation height. Visibility can be assessed using viewshed algorithms, and while previous research has demonstrated the utility of these algorithms across multiple fields, their use in wildland firefighter safety has yet to be explored. The goals of this study were to develop an approach for assessing visibility at the handline level, quantify the effects of spatial resolution on a lidar-driven visibility analysis, and demonstrate a set of spatial metrics that can be used to inform handline safety. Comparisons were made between elevation models derived from airborne lidar at varying spatial resolutions and those derived from LANDFIRE, a US-wide 30 m product. Coarser resolution inputs overestimated visibility by as much as 223%, while the finest-scale resolution input was not practical due to extreme processing times. Canopy cover and slope had strong linear relationships with visibility, with R2 values of 0.806 and 0.718, respectively. Visibility analyses, when conducted at an appropriate spatial resolution, can provide useful information to inform situational awareness in a wildland fire context. Evaluating situational awareness at the handline level prior to engaging a fire may help firefighters evaluate potential safety risks and more effectively plan handlines. 
    more » « less