Abstract Forest fire frequency, extent, and severity have rapidly increased in recent decades across the western United States (US) due to climate change and suppression‐oriented wildfire management. Fuels reduction treatments are an increasingly popular management tool, as evidenced by California's plan to treat 1 million acres annually by 2050. However, the aggregate efficacy of fuels treatments in dry forests at regional and multi‐decadal scales is unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada region of California. We ask how annual treatment extent, stand‐level treatment intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We find that a ∼30% reduction in stand‐replacing fire was achieved under our baseline treatment scenario of 1,000 km2 year−1after a 100‐year treatment period. Prioritizing the most fuel‐heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic stand‐replacement of up to 50%. Both removing constraints on treatment location due to remoteness, topography, and management jurisdiction and prioritizing the most fuel‐heavy stands yielded the highest stand‐replacement rate reduction of ∼90%. Even treatments that succeeded in lowering aggregate fire severity often took multiple decades to yield measurable effects, and avoided live carbon loss remained negligible across scenarios. Our results suggest that strategically placed fuels treatments are a promising tool for controlling forest fire severity at regional, multi‐decadal scales, but may be less effective for mitigating live carbon losses.
more »
« less
Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management
Abstract Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world.
more »
« less
- Award ID(s):
- 2153040
- PAR ID:
- 10566592
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Remote Sensing in Ecology and Conservation
- ISSN:
- 2056-3485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Imaging spectroscopy is a powerful tool used to support diverse Earth science and applications objectives, ranging from understanding and mitigating widespread impacts of climate change to management of water at farm‐scale. Community studies, such as those deployed by NASA's Surface Biology and Geology and ESA's Copernicus Hyperspectral Imaging Mission for the Environment, have offered new and tangible insights into user needs that are then incorporated into overall mission planning and design. These technologies and tools will be key to develop and consolidate downstream services for users and resource management, given the current pressures on the environment posed by climate change and population growth. This process has highlighted the degree to which planned mission capabilities are responsive to community needs. In this study, we analyze user requirements belonging to the Italian Copernicus User Forum and to the user pool of NASA's Surface Biology and Geology community for the synergic use of hyperspectral imaging technology, providing a reference for the development of earth observation services and the consolidation of existing ones. In addition, potential cross‐mission coordination is analyzed to highlight key benefits—(a) addressing shared community needs around products requiring more frequent temporal revisit and (b) shared resources and community expertise around algorithm development. This paper discusses the critical role of early engagement with users to establish a community of practice ready to work with high spatial resolution imaging spectroscopy data sets. The main outcome is a guide for the synergetic use of hyperspectral mission and data together with the identification of the main gaps between user needs and satellite capabilities influencing the development of key national and trans‐national downstream services.more » « less
-
null (Ed.)Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.more » « less
-
Drone-based multispectral sensing is a valuable tool for dryland spatial ecology, yet there has been limited investigation of the reproducibility of measurements from drone-mounted multispectral camera array systems or the intercomparison between drone-derived measurements, field spectroscopy, and satellite data. Using radiometrically calibrated data from two multispectral drone sensors (MicaSense RedEdge (MRE) and Parrot Sequoia (PS)) co-located with a transect of hyperspectral measurements (tramway) in the Chihuahuan desert (New Mexico, USA), we found a high degree of correspondence within individual drone data sets, but that reflectance measurements and vegetation indices varied between field, drone, and satellite sensors. In comparison to field spectra, MRE had a negative bias, while PS had a positive bias. In comparison to Sentinel-2, PS showed the best agreement, while MRE had a negative bias for all bands. A variogram analysis of NDVI showed that ecological pattern information was lost at grains coarser than 1.8 m, indicating that drone-based multispectral sensors provide information at an appropriate spatial grain to capture the heterogeneity and spectral variability of this dryland ecosystem in a dry season state. Investigators using similar workflows should understand the need to account for biases between sensors. Modelling spatial and spectral upscaling between drone and satellite data remains an important research priority.more » « less
-
Abstract Plant functional diversity is strongly connected to photosynthetic carbon assimilation in terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly between and within plant functional types and vertically through forest canopies, resulting in considerable landscape‐scale heterogeneity in three dimensions. Hyperspectral imagery has been used extensively to quantify functional traits across a range of ecosystems but is generally limited to providing information for top of canopy leaves only. On the other hand, lidar data can be used to retrieve the vertical structure of forest canopies. Because these data are rarely collected at the same time, there are unanswered questions about the effect of forest structure on the three ‐dimensional spatial patterns of functional traits across ecosystems. In the United States, the National Ecological Observatory Network's Airborne Observation Platform (NEON AOP) provides an opportunity to address this structure‐function relationship by collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field‐collected foliar trait data, we assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the influence of abiotic gradients and management regimes on top‐of‐canopy percent N and total canopy N (i.e., the total amount of N [g/m2] within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps suggest that, in contrast to top of canopy values, total canopy N variation is dampened across this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of plant functional types.more » « less
An official website of the United States government

