Abstract Wetlands in the Mississippi River Delta are rapidly degrading. Sea level rise and low sediment supply are widely recognized as the two main factors contributing to land‐to‐water conversion. To determine what marsh areas are more resilient, it is fundamental to identify the drivers that regulate marsh accretion and degradation. In this study, a combination of field data and aerial images is used to determine these drivers in Terrebonne Bay, Louisiana, USA. We find that accretion and degradation patterns depend on whether the marsh is located inland in a sheltered area or facing open water. In the first case, the distance to the nearby channel is important, because during flooding of the marsh platform more sediment is deposited in the proximity of channel banks. The accretion rates of marshes facing open water are high and correlate to fetch, a proxy for the ability of waves to resuspend bottom sediment. These areas are more resilient to sea level rise, but waves are also the main mechanism of degradation, as these marshes tend to degrade by edge erosion. Consequently, we propose a bimodal evolution trajectory of the marshes in Terrebonne Bay: marshes close to the bay and facing open water accrete rapidly but are affected by lateral erosion due to waves, whereas sheltered marshes accrete slowly and degrade in large swathes due to insufficient sediment supply.
more »
« less
Using Normalize Difference Vegetation Index to Infer Wetlands Salinity and Organic Contribution to Vertical Accretion Rates
Abstract Vegetation is a key component controlling soil accretion in coastal wetlands through production of belowground organic matter and enhanced deposition of mineral sediments. Vegetation structure is a proxy for wetland health and degradation that can be monitored at large scales with remote sensing. Among different multispectral indices, the Normalized Difference Vegetation Index (NDVI) is generally used for this purpose. Using Google Earth Engine (GEE), NDVI time‐series are extracted around 45 monitoring stations of the Coastwide Reference Monitoring System (CRMS) located in Terrebonne Bay, Louisiana, USA. NDVI tends to increase from saline to freshwater wetlands. Using these NDVI observations and in situ measurements of salinity, soil accretion rates, and geomorphic metrics (i.e., elevation, distance from the bay or from the nearest channel bank), empirical models were developed to derive maps of organic mass accumulation rates and salinity. The analysis shows that NDVI can be used to reproduce the salinity gradient in Terrebonne Bay, as the index captures differences in vegetation cover, which depend on salinity. A negative relationship between NDVI and organic accumulation mass rates is also found, indicating that saline marshes tend to accumulate more organic material compared to fresh wetlands.
more »
« less
- Award ID(s):
- 2224608
- PAR ID:
- 10475106
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 128
- Issue:
- 11
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coastal ecosystems rapidly transform as sea levels rise faster than ecosystems can build elevation through biological processes that accrete organic matter and inorganic sediment. Benthic microbial communities (periphyton) are a crucial driver of sediment accretion in coastal wetlands by forming, trapping, and stabilizing sediments. Inorganic sediments can be either generated in situ by mineral-accreting organisms (e.g., calcium carbonates by periphyton), or materials can be transported from a different origin when sediments become resuspended and displaced, such as during high-wind weather events. In situ-generated sedimentary materials may contribute significantly to elevation gains. This study examines the drivers of coastal periphyton mineral production and whether periphytic diatoms may be used to characterize gradients in these drivers. Periphyton mineral production rates and diatom assemblage composition were measured along three coastal gradients of surface water salinity, conductivity, pH, and periphyton nutrient content in the Biscayne Bay Coastal Wetlands of South Florida. Periphyton mineral production rates ranged from 0.20-0.53 g/m2/d and were greatest at sites with the highest periphyton total carbon and mineral content while lowest at sites with the highest periphyton organic content and total nitrogen and soil depth. Diatom assemblages that sorted consistently along the coastal salinity gradient were reliable indicators of periphyton mineral production, with seven taxa indicating high rates and seven indicating low rates. Diatoms can provide a helpful link between biotic and abiotic processes, indicating where periphyton-driven mineral production contributes most to inorganic carbon cycling and mineral-driven elevation recovery and, hence, to resiliency to sea level rise.more » « less
-
Understanding the relative contributions of aboveground and belowground processes to soil accretion and carbon density may explain carbon sequestration rates in mangroves across different coastal environmental settings. We reformulated the nutrient mangrove model (NUMAN) by improving algorithms and uncertainty analysis using literature values and site-specific observations to evaluate the relative contributions of organic and inorganic sedimentation for three mangrove sites with marked soil fertility gradients reflected by nitrogen-to-phosphorus (N:P) ratios including Shark River (N:P = 28), Rookery Bay (N:P = 54–78), and Taylor Slough (N:P = 102) in south Florida. NUMAN 2.0 considers cellulose as a refractory organic-matter sub-pool and simultaneously incorporates coarse-root inputs to soil formation. The model simulation also captures root necromass accumulation. Monte Carlo (MC) simulations (N = 1000 per site) were conducted to capture uncertainty by treating five key parameters as random variables: lignin content in fine, coarse, and large roots; inorganic sediment loading; and root biomass at the surface. With robust mass balancing of organic matter, NUMAN 2.0 generates precise predictions of surface accretion and carbon density. NUMAN 2.0 simulations estimated mean (standard deviation) soil carbon sequestration rates at 130.1 (55.4) for Shark River, 72.5 (3.7) for Rookery Bay, and 130.0 (83.9) g m-2 yr-1 for Taylor Slough, compared to field values of 123.0, 86.0, and 108.8 (8.7) g m-2 yr-1 , respectively. Simulation experiments with NUMAN 2.0 suggest that belowground organic matter dominates soil formation and carbon sequestration generally in coastal environmental settings with little allochthonous input such as carbonate settings, while wood litterfall should dominate soil organic matter in top 10 cm in estuaries, and bays.more » « less
-
Abstract Coastal marsh survival may be compromised by sea‐level rise, limited sediment supply, and subsidence. Storms represent a fundamental forcing for sediment accumulation in starving marshes because they resuspend bottom material in channels and tidal flats and transport it to the marsh surface. However, it is unrealistic to simulate at high resolution all storms that occurred in the past decades to obtain reliable sediment accumulation rates. Similarly, it is difficult to cover all possible combinations of water levels and wind conditions in fictional scenarios. Thus, we developed a new method that derives long‐term deposition rates from short‐term deposition generated by a finite number of storms. Twelve storms with different intensity and frequency were selected in Terrebonne Bay, Louisiana, USA and simulated with the 2D Delft3D‐FLOW model coupled with the Simulating Waves Nearshore (SWAN) module. Storm impact was analyzed in terms of geomorphic work, namely the product of deposition and frequency. To derive the long‐term inorganic mass accumulation rates, the new method generates every possible combination of the 12 chosen storms and uses a linear model to fit modeled inorganic deposition with measured inorganic mass accumulation rates. The linear model with the best fit (highestR2) was used to derive a map of inorganic mass accumulation rates. Results show that a storm with 1.7 ± 1.6 years return period provides the largest geomorphic work, suggesting that the most impactful storms are those that balance intensity with frequency. Model results show higher accumulation rates in marshes facing open areas where waves can develop and resuspend sediments. This method has the advantage of considering only a few real scenarios and can be applied in any marsh‐bay system.more » « less
-
Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).more » « less
An official website of the United States government
