skip to main content


Title: Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures
Abstract

An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.

 
more » « less
Award ID(s):
2241327
NSF-PAR ID:
10475112
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ($${{{{{{{\mathcal{T}}}}}}}}$$T-) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and$${{{{{{{\mathcal{T}}}}}}}}$$T-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate thatβ-MoTe2realizes a spin-Weyl state and thatα-BiBr hosts both 3D QSHI and T-DAXI regimes.

     
    more » « less
  2. Abstract

    As the thickness of a three-dimensional (3D) topological insulator (TI) becomes comparable to the penetration depth of surface states, quantum tunneling between surfaces turns their gapless Dirac electronic structure into a gapped spectrum. Whether the surface hybridization gap can host topological edge states is still an open question. Herein, we provide transport evidence of 2D topological states in the quantum tunneling regime of a bulk insulating 3D TI BiSbTeSe2. Different from its trivial insulating phase, this 2D topological state exhibits a finite longitudinal conductance at ~2e2/h when the Fermi level is aligned within the surface gap, indicating an emergent quantum spin Hall (QSH) state. The transition from the QSH to quantum Hall (QH) state in a transverse magnetic field further supports the existence of this distinguished 2D topological phase. In addition, we demonstrate a second route to realize the 2D topological state via surface gap-closing and topological phase transition mechanism mediated by a transverse electric field. The experimental realization of the 2D topological phase in a 3D TI enriches its phase diagram and marks an important step toward functionalized topological quantum devices.

     
    more » « less
  3. Abstract

    Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

     
    more » « less
  4. Abstract

    Combining topological insulators (TIs) and magnetic materials in heterostructures is crucial for advancing spin‐based electronics. Magnetic insulators (MIs) can be deposited on TIs using the spin‐spray process, which is a unique nonvacuum, low‐temperature growth process. TIs have highly reactive surfaces that oxidize upon exposure to atmosphere, making it challenging to grow spin‐spray ferrites on TIs. In this work, it is demonstrated that a thin titanium capping layer on TI, followed by oxidation in atmosphere to produce a thin TiOxinterfacial layer, protects the TI surface, without significantly compromising spin transport from the magnetic material across the TiOxto the TI surface states. First, it is demonstrated that in Bi2Te3/TiOx/Ni80Fe20heterostructures, TiOxprovides an excellent barrier against diffusion of magnetic species, yet maintains a large spin‐pumping effect. Second, the TiOxis also used as a protective capping layer on Bi2Te3, followed by the spin‐spray growth of the MI, NixZnyFe2O4(NZFO). For the thinnest TiOxbarriers, Bi2Te3/TiOx/NZFO samples have antiferromagnetic (AFM) disordered interfacial layer because of diffusion. With increasing TiOxbarrier thickness, the diffusion is reduced, but still maintains strong interfacial magnetic exchange‐interaction. These experimental results demonstrate a novel method of low‐temperature growth of magnetic insulators on TIs enabled by interface engineering.

     
    more » « less
  5. Abstract

    Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.

     
    more » « less