Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this work, we propose a geometric non-linear current response induced by magnetic resonance in magnetic Weyl semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect (de Juan et al., Nat. Commun. 8:15995, 2017) previously proposed for Weyl semimetal phases of chiral crystals. However, the non-linear current response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system with ferromagnetism.more » « less
-
Abstract Over the past decade, topological insulators have received enormous attention for their potential in energy‐efficient spin‐to‐charge conversion, enabled by strong spin‐orbit coupling and spin‐momentum locked surface states. Despite extensive research, the spin‐to‐charge conversion efficiency, usually characterized by the spin Hall angle (θSH), remains relatively low at room temperature. In this work, pulsed laser deposition is employed to fabricate high‐quality ternary topological insulator (Bi0.1Sb0.9)2Te3thin films on magnetic insulator Y3Fe5O12. It is found that the value ofθSHreaches ≈0.76 at room temperature and increases to ≈0.9 as the Fermi level is tuned to cross topological surface states via electrical gating. These findings provide an innovative approach to tailoring the spin‐to‐charge conversion in topological insulators and pave the way for their applications in energy‐efficient spintronic devices.more » « less
-
Abstract Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.more » « less
-
The presence of topological flatminibands in moirématerials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by twodimensional insulating materials. We show the lowest conduction (highest valence) Kramers’ pair of minibands can be Z2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with sixfold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers’ minibands into the quantum anomalous Hall state when they are halffilled, which is further stabilized by applying external gate voltages to break inversion. We propose themonolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.more » « less
An official website of the United States government
