skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on November 21, 2024

Title: Low-loss adiabatic fiber-optic coupler for cryogenic photonics

Recent developments in quantum light–matter coupled systems and quantum transducers have highlighted the need for cryogenic optical measurements. In this study, we present a packaged fiber-optic coupler with a coupling efficiency of over 50% for telecom wavelength light down to the mK temperature range. Besides the high coupling efficiency, our method enables sensitive photonic device measurements that are immune to mechanical vibrations present in cryogenic setups.

 
more » « less
NSF-PAR ID:
10475128
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
62
Issue:
34
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 9036
Size(s):
Article No. 9036
Sponsoring Org:
National Science Foundation
More Like this
  1. Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss at 10 Watts of input microwave power. The entire probe can be scanned across a large number of devices inside a3He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er3+ions.

     
    more » « less
  2. Abstract

    Integrated quantum photonic circuitry is an emerging topic that requires efficient coupling of quantum light sources to waveguides and optical resonators. So far, great effort is devoted to engineering on‐chip systems from 3D crystals such as diamond or gallium arsenide. In this study, room‐temperature coupling is demonstrated of quantum emitters embedded in layered hexagonal boron nitride to an on‐chip aluminum nitride waveguide. 1.35% light coupling efficiency is achieved in the device and transmission of single photons through the waveguide is demonstrated. The results serve as foundation for integrating layered materials to on‐chip components and realizing integrated quantum photonic circuitry.

     
    more » « less
  3. We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments.

     
    more » « less
  4. Robust, low-loss photonic packaging of on-chip nanophotonic circuits is a key enabling technology for the deployment of integrated photonics in a variety of classical and quantum technologies including optical communications and quantum communications, sensing, and transduction. To date, no process has been established that enables permanent, broadband, and cryogenically compatible coupling with sub-dB losses from optical fibers to nanophotonic circuits. Here, we report a technique for reproducibly generating a permanently packaged interface between a tapered optical fiber and nanophotonic devices on diamond with a record-low coupling loss <1 dB per facet at near-infrared wavelengths (∼730 nm) that remains stable from 300 K to 30 mK. We further demonstrate the compatibility of this technique with etched lithium niobate on insulator waveguides. The technique lifts performance limitations imposed by scattering as light transfers between photonic devices and optical fibers, paving the way for scalable integration of photonic technologies at both room and cryogenic temperatures.

     
    more » « less
  5. Siilicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity. We observe a more than 30-fold enhancement of luminescence, a near-unity atom-cavity coupling efficiency, and an 8-fold acceleration of the emission from the all-silicon quantum emissive center. Our work opens immediate avenues for large-scale integrated cavity quantum electrodynamics and quantum light-matter interfaces with applications in quantum communication and networking, sensing, imaging, and computing.

     
    more » « less