skip to main content


Title: TIC 378898110: A bright, short-period AM CVn binary in TESS
ABSTRACT

AM CVn-type systems are ultracompact, helium-accreting binary systems that are evolutionarily linked to the progenitors of thermonuclear supernovae and are expected to be strong Galactic sources of gravitational waves detectable to upcoming space-based interferometers. AM CVn binaries with orbital periods ≲20–23 min exist in a constant high state with a permanently ionized accretion disc. We present the discovery of TIC 378898110, a bright (G = 14.3 mag), nearby (309.3 ± 1.8 pc), high-state AM CVn binary discovered in TESS two-minute-cadence photometry. At optical wavelengths, this is the third-brightest AM CVn binary known. The photometry of the system shows a 23.07172(6) min periodicity, which is likely to be the ‘superhump’ period and implies an orbital period in the range 22–23 min. There is no detectable spectroscopic variability. The system underwent an unusual, year-long brightening event during which the dominant photometric period changed to a shorter period (constrained to 20.5 ± 2.0 min), which we suggest may be evidence for the onset of disc-edge eclipses. The estimated mass transfer rate, $\log (\dot{M} / \mathrm{M_\odot } \, \mathrm{yr}^{-1}) = -6.8 \pm 1.0$, is unusually high and may suggest a high-mass or thermally inflated donor. The binary is detected as an X-ray source, with a flux of $9.2 ^{+4.2}_{-1.8} \times 10^{-13}$ erg cm−2 s−1 in the 0.3–10 keV range. TIC 378898110 is the shortest-period binary system discovered with TESS, and its large predicted gravitational-wave amplitude makes it a compelling verification binary for future space-based gravitational wave detectors.

 
more » « less
NSF-PAR ID:
10475133
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3445-3458
Size(s):
["p. 3445-3458"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.

     
    more » « less
  2. ABSTRACT

    We present the discovery of the eclipsing double white dwarf (WD) binary WDJ 022558.21−692025.38 that has an orbital period of 47.19 min. Following identification with the Transiting Exoplanet Survey Satellite, we obtained time series ground based spectroscopy and high-speed multiband ULTRACAM photometry which indicate a primary DA WD of mass $0.40\pm 0.04\, \text{M}_\odot$ and a $0.28\pm 0.02\, \text{M}_\odot$ mass secondary WD, which is likely of type DA as well. The system becomes the third-closest eclipsing double WD binary discovered with a distance of approximately 400 pc and will be a detectable source for upcoming gravitational wave detectors in the mHz frequency range. Its orbital decay will be measurable photometrically within 10 yr to a precision of better than 1 per cent. The fate of the binary is to merge in approximately 41 Myr, likely forming a single, more massive WD.

     
    more » « less
  3. ABSTRACT

    We present the discoveries of two of AM CVn systems, Gaia14aae and SDSS J080449.49+161624.8, which show X-ray pulsations at their orbital periods, indicative of magnetically collimated accretion. Both also show indications of higher rates of mass transfer relative to the expectations from binary evolution driven purely by gravitational radiation, based on existing optical data for Gaia14aae, which show a hotter white dwarf temperature than expected from standard evolutionary models, and X-ray data for SDSS J080449.49+161624.8 which show a luminosity 10−100 times higher than those for other AM CVn at similar orbital periods. The higher mass transfer rates could be driven by magnetic braking from the disc wind interacting with the magnetosphere of the tidally locked accretor. We discuss implications of this additional angular momentum transport mechanism for evolution and gravitational wave detectability of AM CVn objects.

     
    more » « less
  4. Abstract Binary systems of a hot subdwarf B (sdB) star + a white dwarf (WD) with orbital periods less than 2–3 hr can come into contact due to gravitational waves and transfer mass from the sdB star to the WD before the sdB star ceases nuclear burning and contracts to become a WD. Motivated by the growing class of observed systems in this category, we study the phases of mass transfer in these systems. We find that because the residual outer hydrogen envelope accounts for a large fraction of an sdB star’s radius, sdB stars can spend a significant amount of time (∼tens of megayears) transferring this small amount of material at low rates (∼10 −10 –10 −9 M ⊙ yr −1 ) before transitioning to a phase where the bulk of their He transfers at much faster rates ( ≳10 −8 M ⊙ yr −1 ). These systems therefore spend a surprising amount of time with Roche-filling sdB donors at orbital periods longer than the range associated with He star models without an envelope. We predict that the envelope transfer phase should be detectable by searching for ellipsoidal modulation of Roche-filling objects with P orb = 30–100 minutes and T eff = 20,000–30,000 K, and that many (≥10) such systems may be found in the Galactic plane after accounting for reddening. We also argue that many of these systems may go through a phase of He transfer that matches the signatures of AM CVn systems, and that some AM CVn systems associated with young stellar populations likely descend from this channel. 
    more » « less
  5. ABSTRACT

    Binaries consisting of a hot subdwarf star and an accreting white dwarf (WD) are sources of gravitational wave radiation at low frequencies and possible progenitors of Type Ia supernovae if the WD mass is large enough. Here, we report the discovery of the third binary known of this kind: It consists of a hot subdwarf O (sdO) star and a WD with an orbital period of 3.495 h and an orbital shrinkage of 0.1 s in 6 yr. The sdO star overfills its Roche lobe and likely transfers mass to the WD via an accretion disc. From spectroscopy, we obtain an effective temperature of $T_{\mathrm{eff}}=54\, 240\pm 1840$ K and a surface gravity of log g = 4.841 ± 0.108 for the sdO star. From the light curve analysis, we obtain an sdO mass of MsdO = 0.55 M⊙ and a mass ratio of q = MWD/MsdO = 0.738 ± 0.001. Also, we estimate that the disc has a radius of $\sim\!0.41\ \mathrm{R}_\odot$ and a thickness of $\sim\!0.18\ \mathrm{R}_\odot$. The origin of this binary is probably a common envelope ejection channel, where the progenitor of the sdO star is either a red giant branch star or, more likely, an early asymptotic giant branch star; the sdO star will subsequently evolve into a WD and merge with its WD companion, likely resulting in an R Coronae Borealis (R CrB) star. The outstanding feature in the spectrum of this object is strong Ca H&K lines, which are blueshifted by ∼200 km s−1 and likely originate from the recently ejected common envelope, and we estimated that the remnant common envelope (CE) material in the binary system has a density $\sim\!6\times 10^{-10}\ {\rm g\, cm}^{-3}$.

     
    more » « less