AM CVn-type systems are ultracompact, helium-accreting binary systems that are evolutionarily linked to the progenitors of thermonuclear supernovae and are expected to be strong Galactic sources of gravitational waves detectable to upcoming space-based interferometers. AM CVn binaries with orbital periods ≲20–23 min exist in a constant high state with a permanently ionized accretion disc. We present the discovery of TIC 378898110, a bright (G = 14.3 mag), nearby (309.3 ± 1.8 pc), high-state AM CVn binary discovered in TESS two-minute-cadence photometry. At optical wavelengths, this is the third-brightest AM CVn binary known. The photometry of the system shows a 23.07172(6) min periodicity, which is likely to be the ‘superhump’ period and implies an orbital period in the range 22–23 min. There is no detectable spectroscopic variability. The system underwent an unusual, year-long brightening event during which the dominant photometric period changed to a shorter period (constrained to 20.5 ± 2.0 min), which we suggest may be evidence for the onset of disc-edge eclipses. The estimated mass transfer rate, $\log (\dot{M} / \mathrm{M_\odot } \, \mathrm{yr}^{-1}) = -6.8 \pm 1.0$, is unusually high and may suggest a high-mass or thermally inflated donor. The binary is detected as an X-ray source, with a flux of $9.2 ^{+4.2}_{-1.8} \times 10^{-13}$ erg cm−2 s−1 in the 0.3–10 keV range. TIC 378898110 is the shortest-period binary system discovered with TESS, and its large predicted gravitational-wave amplitude makes it a compelling verification binary for future space-based gravitational wave detectors.
We present the discoveries of two of AM CVn systems, Gaia14aae and SDSS J080449.49+161624.8, which show X-ray pulsations at their orbital periods, indicative of magnetically collimated accretion. Both also show indications of higher rates of mass transfer relative to the expectations from binary evolution driven purely by gravitational radiation, based on existing optical data for Gaia14aae, which show a hotter white dwarf temperature than expected from standard evolutionary models, and X-ray data for SDSS J080449.49+161624.8 which show a luminosity 10−100 times higher than those for other AM CVn at similar orbital periods. The higher mass transfer rates could be driven by magnetic braking from the disc wind interacting with the magnetosphere of the tidally locked accretor. We discuss implications of this additional angular momentum transport mechanism for evolution and gravitational wave detectability of AM CVn objects.
more » « less- PAR ID:
- 10484459
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society: Letters
- Volume:
- 529
- Issue:
- 1
- ISSN:
- 1745-3925
- Format(s):
- Medium: X Size: p. L28-L32
- Size(s):
- p. L28-L32
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Binary systems of a hot subdwarf B (sdB) star + a white dwarf (WD) with orbital periods less than 2–3 hr can come into contact due to gravitational waves and transfer mass from the sdB star to the WD before the sdB star ceases nuclear burning and contracts to become a WD. Motivated by the growing class of observed systems in this category, we study the phases of mass transfer in these systems. We find that because the residual outer hydrogen envelope accounts for a large fraction of an sdB star’s radius, sdB stars can spend a significant amount of time (∼tens of megayears) transferring this small amount of material at low rates (∼10 −10 –10 −9 M ⊙ yr −1 ) before transitioning to a phase where the bulk of their He transfers at much faster rates ( ≳10 −8 M ⊙ yr −1 ). These systems therefore spend a surprising amount of time with Roche-filling sdB donors at orbital periods longer than the range associated with He star models without an envelope. We predict that the envelope transfer phase should be detectable by searching for ellipsoidal modulation of Roche-filling objects with P orb = 30–100 minutes and T eff = 20,000–30,000 K, and that many (≥10) such systems may be found in the Galactic plane after accounting for reddening. We also argue that many of these systems may go through a phase of He transfer that matches the signatures of AM CVn systems, and that some AM CVn systems associated with young stellar populations likely descend from this channel.more » « less
-
ABSTRACT We report follow-up observations of three poorly studied AM CVn-type binaries: CRTS CSS150211 J091017–200813, NSV 1440, and SDSS J183131.63+420220.2. Analysing time-series photometry obtained with a range of ground-based facilities as well as with the Transiting Exoplanet Survey Satellite (TESS), we determine the superhump period of CRTS J0910–2008 as $\rm{P_{sh}}=29.700\pm 0.004$ min and the orbital period of NSV 1440 as $\rm{P_{orb}}=36.56\pm 0.03$ min. We also confirm a photometric period of $P=23.026\pm 0.097$ min in SDSS J1831+4202, which is most likely the superhump period. We also report the first optical spectroscopy of CRTS J0910–2008 and NSV 1440 which unambiguously confirms both as AM CVn systems. We briefly discuss the distribution in the Hertzsprung–Russell diagram of the currently known sample of 63 AM CVn stars with known periods and Gaia data.
-
ABSTRACT We report on spectroscopic and photometric observations of the AM Canum Venaticorum (AM CVn) system ASASSN-21br, which was discovered in outburst by the All-Sky Automated Survey for Supernovae in 2021 February. The outburst lasted for around three weeks, and exhibited a pronounced brightness dip for $\approx$4 d, during which the spectra showed a sudden transition from emission- to absorption-line dominated. Only $\approx$60 AM CVn systems with derived orbital periods are found in the Galaxy, therefore increasing the sample of AM CVn systems with known orbital periods is of tremendous importance to (1) constrain the physical mechanisms of their outbursts and (2) establish a better understanding of the low-frequency background noise of future gravitational wave surveys. Time-resolved photometry taken during the outburst of ASASSN-21br showed modulation with a period of around 36.65 min, which is likely the superhump or orbital period of the system. Time-resolved spectroscopy taken with the Southern African Large Telescope did not show any sign of periodicity in the He i absorption lines. This is possibly due to the origin of these lines in the outbursting accretion disc, which makes it challenging to retrieve periodicity from the spectral lines. Future follow-up spectral observations during quiescence might allow us better constrain the orbital period of ASASSN-21br.
-
Context. X-ray surveys combined with optical follow-up observations are used to generate complete flux-limited samples of the main X-ray emitting source classes. eROSITA on the Spectrum-Roentgen-Gamma mission provides sufficient sensitivity to build significantly enhanced samples of rare X-ray emitting sources.Aims. We strive to identify and classify compact white dwarf binaries, cataclysmic variables (CVs), and related objects, which were detected in the sky area of eFEDS, the eROSITA Final Equatorial Depths Survey, and they were observed in the plate program of SDSS-V.Methods. Compact white dwarf binaries were selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r < 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra, spectral variability, color-magnitude and color-color diagrams involving optical and X-ray fluxes, optical variability, and literature work.Results. Upon visual inspection of SDSS spectra and various auxiliary data products, we have identified 26 accreting compact white dwarf binaries (aCWDBs) in eFEDS, of which 24 are proven X-ray emitters. Among those 26 objects, there are 12 dwarf novae, three WZ Sge-like disk-accreting nonmagnetic CVs with low accretion rates, five likely nonmagnetic high accretion rate nova-like CVs, two magnetic CVs of the polar subcategory, and three double degenerates (AM CVn objects). Period bouncing candidates and magnetic systems are rarer than expected in this sample, but it is too small for a thorough statistical analysis. Fourteen of the systems are new discoveries, of which five are fainter than theGaia magnitude limit. Thirteen aCWDBs have measured or estimated orbital periods, of which five were presented here. Through a Zeeman analysis, we revise the magnetic field estimate of the polar system J0926+0105, which is likely a low-field polar atB = 16 MG. We quantified the success of X-ray versus optical/UV selection of compact white dwarf binaries which will be relevant for the full SDSS-V survey. We also identified six white dwarf main sequence (WDMS) systems, among them there is one confirmed pre-CV at an orbital period of 17.6 h and another pre-CV candidate.Conclusions. This work presents successful initial work in building large samples of all kinds of accreting and X-ray emitting compact white dwarf binaries that will be continued over the full hemisphere in the years to come.