skip to main content

Title: Arabidopsis ACYL CARRIER PROTEIN4 and RHOMBOID LIKE10 act independently in chloroplast phosphatidate synthesis

ACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism. Alterations in the content and molecular species of chloroplast lipids such as MGDG and phosphatidylglycerol were observed in the acp4 and rbl10 mutants, which are likely associated with the changes in the size and profiles of diacylglycerol (DAG), phosphatidic acid (PA), and acyl-ACP precursor pools. ACP4 contributed to the size and profile of the acyl-ACP pool and interacted with acyl-ACP-utilizing enzymes, as expected for its role in fatty acid biosynthesis and chloroplast lipid assembly. RBL10 appeared to be involved in the conversion of PA to DAG precursors for MGDG biosynthesis as evidenced by the increased 34:x PA and decreased 34:x DAG in the rbl10 mutant and the slow turnover of radiolabeled PA in isolated chloroplasts fed with [14C] acetate. Interestingly, the impaired PA turnover in rbl10 was partially reversed in the acp4 rbl10 double mutant. Collectively, this study shows that ACP4 and RBL10 affect chloroplast lipid biosynthesis by modulating substrate precursor pools and appear to act independently.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
Medium: X Size: p. 2661-2676
["p. 2661-2676"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl Carrier Proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pathovar tomato (Pto). The mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for the biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate higher level of SA and display the corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, the methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against Pto in acp1 mutants than that in wild-type plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense. 
    more » « less
  2. Summary

    In plant lipid metabolism, the synthesis of many intermediates or end products often appears overdetermined with multiple synthesis pathways acting in parallel. Lipid metabolism is also dynamic with interorganelle transport, turnover, and remodeling of lipids. To explore this complexityin vivo, we developed anin vivolipid ‘tag and track’ method. Essentially, we probed the lipid metabolism inArabidopsis thalianaby expressing a coding sequence for a fatty acid desaturase fromPhyscomitrella patens(Δ6D). This enzyme places a double bond after the 6th carbon from the carboxyl end of an acyl group attached to phosphatidylcholine at itssn‐2 glyceryl position providing a subtle, but easily trackable modification of the glycerolipid. Phosphatidylcholine is a central intermediate in plant lipid metabolism as it is modified and converted to precursors for other lipids throughout the plant cell. Taking advantage of the exclusive location of Δ6D in the endoplasmic reticulum (ER) and its known substrate specificity for one of the two acyl groups on phosphatidylcholine, we were able to ‘tag and track’ the distribution of lipids within multiple compartments and their remodeling in transgenic lines of different genetic backgrounds. Key findings were the presence ofER‐derived precursors in plastid phosphatidylglycerol and prevalent acyl editing of thylakoid lipids derived from multiple pathways. We expect that this ‘tag and track’ method will serve as a tool to address several unresolved aspects of plant lipid metabolism, such as the nature and interaction of different subcellular glycerolipid pools during plant development or in response to adverse conditions.

    more » « less
  3. In humans, dietary polyunsaturated fatty acids (PUFAs) are involved in therapeutic processes such as prevention and treatment of cardiovascular diseases, neuropsychiatric disorders, and dementia. We examined the physiology, PUFA accumulation and glycerol lipid biosynthesis in the marine microalga Nannochloropsis salina in response to constant suboptimal temperature (<20 °C). As expected, N. salina exhibited significantly reduced growth rate and photosynthetic activity compared to optimal cultivation temperature. Total fatty acid contents were not significantly elevated at reduced temperatures. Cultures grown at 5 °C had the highest quantity of eicosapentanoic acid (EPA) (C20:5n3) and the lowest growth rate. Additionally, we monitored broadband lipid composition to model the occurrence of metabolic alteration and remodeling for various lipid pools. We focused on triacylglycerol (TAG) with elevated PUFA content. TAGs with EPA at all three acyl positions were higher at a cultivation temperature of 15 °C. Furthermore, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, which are polar lipids associated with chloroplast membranes, decreased with reduced cultivation temperatures. Moreover, gene expression analysis of key genes involved in Kennedy pathway for de novo TAG biosynthesis revealed bimodal variations in transcript level amongst the temperature treatments. Collectively, these results show that Nannochloropsis salina is a promising source of PUFA containing lipids. 
    more » « less
  4. null (Ed.)
    Abstract Alcohol-forming fatty acyl reductases (FARs) catalyze the reduction of thioesters to alcohols and are key enzymes for microbial production of fatty alcohols. Many metabolic engineering strategies utilize FARs to produce fatty alcohols from intracellular acyl-CoA and acyl-ACP pools; however, enzyme activity, especially on acyl-ACPs, remains a significant bottleneck to high-flux production. Here, we engineer FARs with enhanced activity on acyl-ACP substrates by implementing a machine learning (ML)-driven approach to iteratively search the protein fitness landscape. Over the course of ten design-test-learn rounds, we engineer enzymes that produce over twofold more fatty alcohols than the starting natural sequences. We characterize the top sequence and show that it has an enhanced catalytic rate on palmitoyl-ACP. Finally, we analyze the sequence-function data to identify features, like the net charge near the substrate-binding site, that correlate with in vivo activity. This work demonstrates the power of ML to navigate the fitness landscape of traditionally difficult-to-engineer proteins. 
    more » « less
  5. Abstract

    Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5′-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.

    more » « less