skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new lineage of deep-reef gobies from the Caribbean, including two new species and one new genus (Teleostei: Gobiidae: Gobiosomatini)
Fish communities on tropical deep reefs are dominated by species that belong to families primarily composed of shallow-water species. Collections of deep-reef fishes via submersibles have allowed us to include these deep-reef species in molecular phylogenies, providing insights into the timing and frequency of invasions from shallow to deep reefs. Here we provide evidence of a new deep-reef invasion in the tribe Gobiosomatini in the family Gobiidae (gobies). We describe two new species, one of which belongs to a new genus, and incorporate these taxa into a time-calibrated molecular phylogeny of Gobiosomatini to show that, collectively, these two genera represent a previously unreported independent invasion on to deep reefs that occurred approximately 20–30 million years ago. These new taxa are readily distinguished from related genera and species by a combination of live coloration, pelvic-fin morphology, meristic characters, head-pore patterns and other osteological characters. We discuss the relevance of these two new species to the systematics of the tribe Gobiosomatini and include a comparison to all known genera in the tribe.  more » « less
Award ID(s):
1701665
PAR ID:
10475200
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Zoological Journal of the Linnean Society
Date Published:
Journal Name:
Zoological Journal of the Linnean Society
Volume:
197
Issue:
2
ISSN:
0024-4082
Page Range / eLocation ID:
322 to 343
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ 15 N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a , lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial. 
    more » « less
  2. null (Ed.)
    Small red algal morphologically variable blades have been extensively collected from Hawaiian reefs, but for many specimens their taxonomy remains poorly understood. In surveys of the Papahānaumokuākea Marine National Monument (PMNM) and Main Hawaiian Islands (MHI), we discovered two taxa of undescribed small (< 5 cm) red blades that matched the genera Psaromenia and Meredithia, based on morphology and molecular analyses. Neither genus has been previously recorded in the Hawaiian Islands, and neither group of specimens matched currently described species in these two genera. Accordingly, these specimens are described here as new species within the family Kallymeniaceae. Psaromenia laulamaula sp. nov., exclusively found at mesophotic depths (83–94 m) in PMNM, is easily distinguished from other members of the genus by its comparatively large, procarpic carpogonial branch system and solitary obovate pink-tomagenta blades. Conversely, Meredithia hawaiiensis sp. nov., occurring in both shallow (0–17 m) and mesophotic depths (55 m), has high morphological plasticity, with characters that overlap with other Meredithia species, and can only be distinguished based on DNA sequences. This study provides additional evidence of the extent of diversity in the Kallymeniaceae that is poorly characterized from mesophotic depths and provides further evidence that members of the macroalgal flora contain overlooked biodiversity. 
    more » « less
  3. The type of the xeniid soft coral Sansibia flava (May, 1898) is re-described for the first time and its morphological diagnosis is presented. A subsequent integrated analysis of molecular and morphological characters of related Xeniidae, including species indigenous to the Indo-Pacific Ocean and invasive in the Atlantic (Brazil), led to the description of a new Sansibia species, as well as two new genera comprising an additional three new species. All of these taxa are encrusting, with polyps arising directly from a spreading basal membrane. Molecular phylogenetic analyses show that these genera are not sister taxa, thus further emphasizing the remarkable phylogenetic diversity of xeniids with such a growth form. The sclerites of all species are uniformly ellipsoid platelets, abundant throughout the colony. The species exhibit restricted, non-overlapping geographic ranges, with distinct genotypes (molecular operational taxonomic units) found in different marine realms. The results emphasize the importance of re-examination of original old type material while applying molecular phylogenetic analyses in order to delineate species boundaries and to recognize biodiversity patterns. 
    more » « less
  4. Abstract—The diverse and spectacular Hibisceae tribe comprises over 750 species. No studies, however, have broadly sampled across the dozens of genera in the tribe, leading to uncertainty in the relationships among genera. The non-monophyly of the genusHibiscusis infamous and challenging, whereas the monophyly of most other genera in the tribe has yet to be assessed, including the large genusPavonia.Here we significantly increase taxon sampling in the most complete phylogenetic study of the tribe to date. We assess monophyly of most currently recognized genera in the tribe and include three and thirteen newly sampled sections ofHibiscusandPavonia,respectively. We also include five rarely sampled genera and 137 species previously unsampled. Our phylogenetic trees demonstrate thatHibiscus, as traditionally defined, encompasses at least 20 additional genera. The status ofPavoniaemerges as comparable in complexity toHibiscus. We offer clarity in the phylogenetic placement of several taxa of uncertain affinity (e.g.Helicteropsis,Hibiscadelphus, Jumelleanthus,andWercklea). We also identify two new clades and elevate them to the generic rank with the recognition of two new monospecific genera: 1)BlanchardiaM.M.Hanes & R.L.Barrett is a surprising Caribbean lineage that is sister to the entire tribe, and 2)AstrohibiscusMcLay & R.L.Barrett represents former members ofHibiscus caesiuss.l.CraveniaMcLay & R.L.Barrett is also described as a new genus for theHibiscus panduriformisclade, which is allied toAbelmoschus. Finally, we introduce a new classification for the tribe and clarify the boundaries ofHibiscusandPavonia. 
    more » « less
  5. BackgroundLucidotini is a diverse tribe of lampyrine fireflies present throughout the New World, Europe, and Asia. Most of the over 30 genera have overlapping diagnoses, largely due to a lack of revisionary and phylogenetic studies. Widespread convergence in sensory morphology, traditionally used in genus-level diagnoses, further compounds the taxonomic issues surrounding the Lucidotini. Recent work has cast light on the value of terminalia and genitalic traits for Lucidotini taxonomy and called for a more thorough screening of morphological characters. Of special interest are basal outgrowths of the phallus (i.e., ventrobasal processes)—currently only known inAlychnusKirsch andPhotinusLaporte–that can be quite informative at the species level, but its variation within Lucidotini remains poorly studied. Most Lucidotini species remain only superficially described, while internal characters—including those of terminalia and genitalia—which could inform species identification and phylogenetic relatedness, remain unknown. Upon studying eight Lucidotini species superficially looking likePhotinusandPhotinoidesMcDermott—all of which bearing long ventrobasal processes–we raised the hypothesis that they belonged to a genus yet to be recognized. MethodsHere, we analyzed 97 morphological characters of 32 lampyrid species spanning 17 of 30 Lucidotini genera under Bayesian Inference. ResultsWe found evidence for the recognition and description ofSaguassugen. nov.to include seven new species (Saguassu acutumsp. nov.,Saguassu grossiisp. nov.,Saguassu manauarasp. nov.,Saguassu rebellumsp nov.,Saguassu rourasp. nov.,Saguassu serratumsp. nov.andSaguassu sinuosumsp. nov.), in addition toPhotinus dissidensOlivier ((transferred herein, thus generatingSaguassu dissidenscomb. nov.), for which we also designate a lectotype and two paralectotypes). This previously neglected lineage of Lucidotini spans four South American biomes: Amazon, Atlantic Rainforest, Cerrado, and Pampa. Interestingly,Saguassuspecies span a gradient of morphologies related to signaling: fromLampyris-style ventrally bulging eyes, tiny antennae and no lanterns; intermediate eyes and antennae, with complete lanterns as inPhotinus; to small eyes and long antennae and small lanterns as in manyLucidotaLaporte.Saguassugen. nov.was consistently found closely related to the three other Lucidotini taxa with ventrobasal processes (i.e.,Alychnus,Photinoides, andPhotinus). We provide an occurrence map of and a dichotomous key toSaguassuspecies, thoroughly compare this genus with co-occurring Lucidotini genera, and suggest steps towards a revision of the Lucidotini tribe. 
    more » « less