Abstract Diel vertical migration (DVM) is a common behavior among marine organisms to balance the trade‐off between surface feeding opportunities and predation‐related mortality risk. Body size is a master trait that impacts predation risk to both visual and nonvisual predators. Acoustic measurements from the autonomousZoogliderrevealed size‐dependent DVM behaviors in the San Diego Trough. Dual frequency (200 and 1000 kHz) backscatter, in conjunction with physical properties of the ambient water and optical imaging of zooplankton, were recorded during 12Zooglidermissions over 2 yr. Acoustic size‐categories were identified based on the theoretical scattering properties of dominant taxonomic groups identified optically by the Zoocam. Acoustic modeling suggests that the measured acoustic backscatter in this region is largely dominated by copepods, with appreciable contributions from other taxa. We found that larger organisms migrated deeper (245–227 m) and faster (> 20 m h−1) compared to smaller organisms (156 m, > 15 m h−1). Larger organisms entered the upper layer of the water column later in the evening (0.2–1.5 h later) and descended into deeper water earlier in the morning (0.4–3.7 h earlier) than smaller‐bodied organisms, consistent with body size‐dependent visual predation risk. The variability in daytime depths occupied by small, intermediate, and large‐bodied backscatterers was related to the depth of the euphotic zone, again consistent with light‐dependent risk of predation.
more »
« less
Size and transparency influence diel vertical migration patterns in copepods
Abstract Diel vertical migration (DVM) is a widespread phenomenon in aquatic environments. The primary hypothesis explaining DVM is the predation‐avoidance hypothesis, which suggests that zooplankton migrate to deeper waters to avoid detection during daylight. Copepods are the predominant mesozooplankton undergoing these migrations; however, they display massive morphological variation. Visual risk also depends on a copepod's morphology. In this study, we investigate hypotheses related to morphology and DVM: (H1) as size increases visual risk, increases in body size will increase DVM magnitude and (H2) if copepod transparency can reduce visual risk, increases in transparency will reduce DVM magnitude. In situ copepod images were collected across several cruises in the Sargasso Sea using an Underwater Vision Profiler 5. Copepod morphology was characterized from these images and a dimension reduction approach. Although in situ imaging offers challenges for quantifying mesozooplankton behavior, we introduce a robust method for quantifying DVM. The results show a clear relationship in which larger copepods have a larger DVM signal. Darker copepods also have a larger DVM signal, however, only among the largest group of copepods and not smaller ones. These findings highlight the complexity of copepod morphology and DVM behavior.
more »
« less
- PAR ID:
- 10475250
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 68
- Issue:
- 12
- ISSN:
- 0024-3590
- Format(s):
- Medium: X Size: p. 2749-2758
- Size(s):
- p. 2749-2758
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Copepods, which play major roles in marine food webs and biogeochemical cycling, frequently undergo diel vertical migration (DVM), swimming downwards during the day to avoid visual predation and upwards at night to feed. Natural water columns that are stratified with chemical stressors at depth, such as hypoxia and acidification, are increasing with climate change. Understanding behavioral responses of copepods to these stresses—in particular, whether copepods alter their natural migration—is important to anticipating impacts of climate change on marine ecosystems. We conducted laboratory experiments using stratified water columns to measure the effects of bottom water hypoxia and pH on mortality, distribution, and swimming behaviors of the calanoid copepodCalanuspacificus. When exposed to hypoxic (0.65 mg O2l-1) bottom waters, the height ofC.pacificusfrom the bottom increased 20% within hypoxic columns, and swimming speed decreased 46% at the bottom of hypoxic columns and increased 12% above hypoxic waters. When exposed to low pH (7.48) bottom waters, swimming speeds decreased by 8 and 9% at the base of the tanks and above acidic waters, respectively. Additionally, we found a 118% increase in ‘moribund’ (immobile on the bottom) copepods when exposed to hypoxic, but not acidic, bottom waters. Some swimming statistics differed between copepods collected from sites with versus without historical hypoxia and acidity. Observed responses suggest potential mechanisms underlyinginsituchanges in copepod population distributions when exposed to chemical stressors at depth.more » « less
-
Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.more » « less
-
Abstract Copepods are key components of aquatic habitats across the globe. Understanding how they respond to warming is important for predicting the effects of climate change on aquatic communities. Lethal thermal limits may play an important role in determining responses to warming. Thermal tolerance can vary over several different spatial and temporal scales, but we still lack a fundamental understanding of what drives the evolution of these patterns in copepods. In this Horizons piece, we provide a synthesis of global patterns in copepod thermal tolerance and potential acclimatory capacities. Copepod thermal tolerance increases with maximum annual temperature. We also find that the effects of phenotypic plasticity on thermal tolerance are negatively related to the magnitude of thermal tolerance, suggesting a potential trade-off between these traits. Our ability to fully describe these patterns is limited, however, by a lack of spatial, temporal and phylogenetic coverage in copepod thermal tolerance data. We indicate several priority areas for future work on copepod thermal tolerance, and accompanying suggestions regarding experimental design and methodology.more » « less
-
Abstract Some planktonic patches have markedly higher concentrations of organisms compared to ambient conditions and are <5 m in thickness (i.e. thin layers). Conventional net sampling techniques are unable to resolve this vertical microstructure, while optical imaging systems can measure it for limited durations. Zooglider, an autonomous zooplankton-sensing glider, uses a low-power optical imaging system (Zoocam) to resolve mesozooplankton at a vertical scale of 5 cm while making concurrent physical and acoustic measurements (Zonar). In March 2017, Zooglider was compared with traditional nets (MOCNESS) and ship-based acoustics (Simrad EK80). Zoocam recorded significantly higher vertically integrated abundances of smaller copepods and appendicularians, and larger gelatinous predators and mineralized protists, but similar abundances of chaetognaths, euphausiids, and nauplii. Differences in concentrations and size-frequency distributions are attributable to net extrusion and preservation artifacts, suggesting advantages of in situ imaging of organisms by Zooglider. Zoocam detected much higher local concentrations of copepods and appendicularians (53 000 and 29 000 animals m−3, respectively) than were resolvable by nets. The EK80 and Zonar at 200 kHz agreed in relative magnitude and distribution of acoustic backscatter. The profiling capability of Zooglider allows for deeper high-frequency acoustic sampling than conventional ship-based acoustics.more » « less
An official website of the United States government
