skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Wolf 359 in Sheep's Clothing: Hunting for Substellar Companions in the Fifth-closest System Using Combined High-contrast Imaging and Radial Velocity Analysis
Abstract Wolf 359 (CN Leo, GJ 406, Gaia DR3 3864972938605115520) is a low-mass star in the fifth-closest neighboring system (2.41 pc). Because of its relative youth and proximity, Wolf 359 offers a unique opportunity to study substellar companions around M stars using infrared high-contrast imaging and radial velocity monitoring. We present the results ofMs-band (4.67μm) vector vortex coronagraphic imaging using Keck-NIRC2 and add 12 Keck-HIRES and 68 MAROON-X velocities to the radial velocity baseline. Our analysis incorporates these data alongside literature radial velocities from CARMENES, the High Accuracy Radial velocity Planet Searcher, and Keck-HIRES to rule out the existence of a close (a< 10 au) stellar or brown dwarf companion and the majority of large gas giant companions. Our survey does not refute or confirm the long-period radial velocity candidate, Wolf 359 b (P∼ 2900 days), but rules out the candidate's existence as a large gas giant (>4MJup) assuming an age of younger than 1 Gyr. We discuss the performance of our high-contrast imaging survey to aid future observers using Keck-NIRC2 in conjunction with the vortex coronagraph in theMsband and conclude by exploring the direct imaging capabilities with JWST to observe Jupiter- and Neptune-mass planets around Wolf 359.  more » « less
Award ID(s):
2108465
PAR ID:
10475266
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
166
Issue:
6
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 260
Size(s):
Article No. 260
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Super-RDI, a unique framework for the application of reference star differential imaging (RDI) to Keck/NIRC2 high-contrast imaging observations with the vortex coronagraph. Super-RDI combines frame selection and signal-to-noise ratio (S/N) optimization techniques with a large multiyear reference point-spread function (PSF) library to achieve optimal PSF subtraction at small angular separations. We compile an ∼7000 frame reference PSF library based on a set of 288 new Keck/NIRC2 L sequences of 237 unique targets acquired between 2015 and 2019 as part of two planet-search programs designed for RDI, one focusing on nearby young M dwarfs and the other targeting members of the Taurus star-forming region. For our data set, synthetic companion injection-recovery tests reveal that frame selection with the mean-squared error metric combined with Karhunen–Loève Image-Processing-based PSF subtraction using 1000–3000 frames and ≲500 principal components yields the highest average S/N for injected synthetic companions. We uniformly reduce targets in the young M-star survey with both Super-RDI and angular differential imaging (ADI). For the typical parallactic angle rotation of our data set (∼10°), Super-RDI performs better than a widely used implementation of ADI-based PSF subtraction at separations ≲0.″4 (≈5λ/D), gaining an average of 0.25 mag in contrast at 0.″25 and 0.4 mag in contrast at 0.″15. This represents a performance improvement in separation space over RDI with single-night reference star observations (∼100 frame PSF libraries) applied to a similar Keck/NIRC2 data set in previous work. We recover two known brown dwarf companions and provide detection limits for 155 targets in the young M-star survey. Our results demonstrate that increasing the PSF library size with careful selection of reference frames can improve the performance of RDI with the Keck/NIRC2 vortex coronagraph in L
    more » « less
  2. Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15Mand drops off atMMS > 0.2M, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario. 
    more » « less
  3. Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M= 1.10 ± 0.10M,R=1.17 ± 0.12R). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23Rand a mass measurement ofMp= 9.6 ± 3.9M). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet. 
    more » « less
  4. Abstract The detection of satellites around extrasolar planets, so called exomoons, remains a largely unexplored territory. In this work, we study the potential of detecting these elusive objects from radial velocity monitoring of self-luminous, directly imaged planets. This technique is now possible thanks to the development of dedicated instruments combining the power of high-resolution spectroscopy and high-contrast imaging. First, we demonstrate a sensitivity to satellites with a mass ratio of 1%–4% at separations similar to the Galilean moons from observations of a brown-dwarf companion (HR 7672 B;Kmag= 13; 0.″7 separation) with the Keck Planet Imager and Characterizer (R∼ 35,000 in theKband) at the W. M. Keck Observatory. Current instrumentation is therefore already sensitive to large unresolved satellites that could be forming from gravitational instability akin to binary star formation. Using end-to-end simulations, we then estimate that future instruments such as the Multi-Object Diffraction-limited High-resolution Infrared Spectrograph, planned for the Thirty Meter Telescope, should be sensitive to satellites with mass ratios of ∼10−4. Such small moons would likely form in a circumplanetary disk similar to the Jovian satellites in the solar system. Looking for the Rossiter–McLaughlin effect could also be an interesting pathway to detecting the smallest moons on short orbital periods. Future exomoon discoveries will allow precise mass measurements of the substellar companions that they orbit and provide key insight into the formation of exoplanets. They would also help constrain the population of habitable Earth-sized moons orbiting gas giants in the habitable zone of their stars. 
    more » « less
  5. The recent Gaia Focused Product Release contains radial velocity time-series for more than 9,000 Gaia long-period photometric variables. Here we search for binary systems with large radial velocity amplitudes to identify candidates with massive, unseen companions. Eight targets have binary mass function f ( M ) > 1 M , three of which are eclipsing binaries. The remaining five show evidence of ellipsoidal modulations. We fit spectroscopic orbit models to the Gaia radial velocities, and fit the spectral energy distributions of three targets. For the two systems most likely to host dark companions, J0946 and J1640, we use PHOEBE to fit the ASAS-SN light curves and Gaia radial velocities. The derived companion masses are > 3 M , but the high Galactic dust extinctions towards these objects limit our ability to rule out main sequence companions or subgiants hotter than the photometric primaries. These systems are similar to other stellar-mass black hole impostors, notably the Unicorn (V723 Mon) and the Giraffe (2M04123153+6738486). While it is possible that J1640 and J0946 are similar examples of stripped giant star binaries, high-resolution spectra can be used to determine the nature of their companions. 
    more » « less