skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reductive amination cascades in cell‐free and resting whole cell formats for valorization of lignin deconstruction products
Abstract The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin‐derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω‐transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates. In addition, we compare the performance of these systems in cell‐free and resting whole‐cell biocatalysis formats using the conversion of vanillate to vanillyl amine as model chemistry. We also demonstrate that resting whole cells can be recycled for multiple batch reactions. We used the knowledge gained from this study to produce several amines from carboxylic acid precursors using one‐pot biocatalytic reactions, several of which we report for the first time. These results expand our knowledge of these industrially relevant enzyme families to new substrates and contexts for environmentally friendly and potentially low‐cost synthesis of diverse aryl aldehydes and amines.  more » « less
Award ID(s):
1934887
PAR ID:
10475275
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
ISSN:
0006-3592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diverse amines and amino acids are now readily accessed from carboxylic acids, aldehydes, and amine precursors in a direct decarboxylative reaction enabled by a homogeneous triple catalytic system based on acridine photocatalysis. 
    more » « less
  2. Abstract Nonstandard amino acids (nsAAs) that arel‐phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date, these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5′‐phosphate (PLP)‐dependent enzymes, specifically anl‐threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, toward substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one‐pot biocatalytic cascade that achieves high‐yield synthesis of 18 diversel‐phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate the addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis ofl‐phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate‐based route for preparative‐scale synthesis of 4‐formyl‐l‐phenylalanine, a nsAA with a bio‐orthogonal handle that is not readily market‐accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing costs and democratize synthesis for many valuable nsAAs. 
    more » « less
  3. Abstract In the presence of a thiourea–carboxylic acid catalyst, N-9-fluorenyltryptamines undergo highly enantioselective Pictet–Spengler reactions with a range of aldehydes. The reaction works particularly well with aromatic aldehydes, tolerating electronically diverse substituents in all ring positions. Electron-deficient tryptamines are viable substrates. Removal of the fluorenyl protecting group is readily accomplished without deterioration of product ee. 
    more » « less
  4. Cell-free gene expression systems derived from bacterial lysates enable the expression of biosynthetic pathways from inexpensive and easily prepared DNA templates. These systems hold great promise for modular and on-demand bioproduction of valuable small molecules in resource-limited settings but are constrained in their long-term stability, reusability, and deployability. In this work, we demonstrate that multiple cell-free expressed enzymes can be co-immobilized in biocompatible hydrogels made from poly(ethylene glycol) diacrylate (PEGDA) with added glycerol for enhanced gel integrity. Using small-angle X-ray scattering (SAXS), we show that the mesh size of PEGDA-glycerol hydrogels is comparable to the globular sizes of many proteins and enzymes, which could be used for protein entrapment. We found that the combination between entrapment and chemical ligation of the enzymes was effective to retain proteins. By employing a method for direct fluorescence measurement from hydrogels, we found that proteins can be retained in PEGDA-glycerol for at least a week. By separating the cell-free enzyme expression from the immobilization step, we successfully fabricated enzyme-laden hydrogels with three heterologous cell-free enzymes for the bioconversion of pyruvic acid to malic acid, an industrially valuable and versatile precursor chemical. Both heterologous and endogenous enzymes from the lysate remain functional in photo-cross-linked hydrogels and can be reused for multiple biocatalytic cycles. Moreover, we also found that the immobilized enzymes exhibit up to 1.6-fold higher activity and 2-fold longer lifetimes than free enzymes in liquid reactions. These results could advance the deployment of cell-free synthetic biology because they show that reusable, stable, and durable multienzyme systems can be created using readily available materials and fabrication techniques. 
    more » « less
  5. Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings, incurring large processing costs for the production of industrial-scale biofuels or biochemicals. Manipulating surface charge interactions to minimize nonproductive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability but with limited demonstrated success to date. Here, we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe, Thermobifida fusca. A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of −52 to 37 was computationally designed using Rosetta macromolecular modeling software. Activity for all mutants was rapidly characterized as soluble cell lysates, and promising mutants (containing mutations on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2- and 5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using a protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM-containing endocellulases exhibited a 5–10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity toward complex lignocellulosic biomass-derived substrates. 
    more » « less