The increasing adoption of machine learning tools has led to calls for accountability via model interpretability. But what does it mean for a machine learning model to be interpretable by humans, and how can this be assessed? We focus on two definitions of interpretability that have been introduced in the machine learning literature: simulatability (a user's ability to run a model on a given input) and "what if" local explainability (a user's ability to correctly determine a model's prediction under local changes to the input, given knowledge of the model's original prediction). Through a user study with 1,000 participants, we test whether humans perform well on tasks that mimic the definitions of simulatability and "what if" local explainability on models that are typically considered locally interpretable. To track the relative interpretability of models, we employ a simple metric, the runtime operation count on the simulatability task. We find evidence that as the number of operations increases, participant accuracy on the local interpretability tasks decreases. In addition, this evidence is consistent with the common intuition that decision trees and logistic regression models are interpretable and are more interpretable than neural networks.
more »
« less
Why the Rich Get Richer? On the Balancedness of Random Partition Models
Random partition models are widely used in Bayesian methods for various clustering tasks, such as mixture models, topic models, and community detection problems. While the number of clusters induced by random partition models has been studied extensively, another important model property regarding the balancedness of partition has been largely neglected. We formulate a framework to define and theoretically study the balancedness of exchangeable random partition models, by analyzing how a model assigns probabilities to partitions with different levels of balancedness. We demonstrate that the "rich-get-richer" characteristic of many existing popular random partition models is an inevitable consequence of two common assumptions: product-form exchangeability and projectivity. We propose a principled way to compare the balancedness of random partition models, which gives a better understanding of what model works better and what doesn’t for different applications. We also introduce the "rich-get-poorer" random partition models and illustrate their application to entity resolution tasks.
more »
« less
- Award ID(s):
- 1854655
- PAR ID:
- 10475286
- Publisher / Repository:
- PMLR
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by representing nodes in a low-dimensional space. Although many recent methods have been proposed for representation learning of HNs, there is still much room for improvement. Random walks based methods are currently popular methods to learn network embedding; however, they are random and limited by the length of sampled walks, and have difculty capturing network structural information. Some recent researches proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model, the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but the current design of GCN is intended for homogenous networks. This paper proposes a novel combination of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution design by adding node self-signicance. To validate our model in learning feature representation, we present comprehensive experiments on four real-world datasets and two representation tasks: classication and link prediction. WMGCN's representations can improve accuracy scores by up to around 10% in comparison to other popular representation learning models. What's more, WMGCN'feature learning outperforms other popular baselines. The experimental results clearly show our model is superior over other state-of-the-art representation learning algorithms.more » « less
-
Nonparametric regression on complex domains has been a challenging task as most existing methods, such as ensemble models based on binary decision trees, are not designed to account for intrinsic geometries and domain boundaries. This article proposes a Bayesian additive regression spanning trees (BAST) model for nonparametric regression on manifolds, with an emphasis on complex constrained domains or irregularly shaped spaces embedded in Euclidean spaces. Our model is built upon a random spanning tree manifold partition model as each weak learner, which is capable of capturing any irregularly shaped spatially contiguous partitions while respecting intrinsic geometries and domain boundary constraints. Utilizing many nice properties of spanning tree structures, we design an efficient Bayesian inference algorithm. Equipped with a soft prediction scheme, BAST is demonstrated to significantly outperform other competing methods in simulation experiments and in an application to the chlorophyll data in Aral Sea, due to its strong local adaptivity to different levels of smoothness.more » « less
-
Proc. of 2023 IEEE 39th International Conference on Data Engineering (Ed.)Numerous papers get published all the time. However, some papers are born to be well-cited while others are not. In this work, we revisit the important problem of citation prediction, by focusing on the important yet realistic prediction on the average number of citations a paper will attract per year. The task is nonetheless challenging because many correlated factors underlie the potential impact of a paper, such as the prestige of its authors, the authority of its publishing venue, and the significance of the problems/techniques/applications it studies. To jointly model these factors, we propose to construct a heterogeneous publication network of nodes including papers, authors, venues, and terms. Moreover, we devise a novel heterogeneous graph neural network (HGN) to jointly embed all types of nodes and links, towards the modeling of research impact and its propagation. Beyond graph heterogeneity, we find it also important to consider the latent research domains, because the same nodes can have different impacts within different communities. Therefore, we further devise a novel cluster-aware (CA) module, which models all nodes and their interactions under the proper contexts of research domains. Finally, to exploit the information-rich texts associated with papers, we devise a novel text-enhancing (TE) module for automatic quality term mining. With the real-world publication data of DBLP, we construct three different networks and conduct comprehensive experiments to evaluate our proposed CATE-HGN framework, against various state-of-the-art models. Rich quantitative results and qualitative case studies demonstrate the superiority of CATEHGN in citation prediction on publication networks, and indicate its general advantages in various relevant downstream tasks on text-rich heterogeneous networks.more » « less
-
While large language models (LLMs) like GPT-3 have achieved impressive results on multiple choice question answering (MCQA) tasks in the zero, one, and few-shot settings, they generally lag behind the MCQA state of the art (SOTA). MCQA tasks have traditionally been presented to LLMs like cloze tasks. An LLM is conditioned on a question (without the associated answer options) and its chosen option is the one assigned the highest probability after normalization (for length, etc.). A more natural prompting approach is to present the question and answer options to the LLM jointly and have it output the symbol (e.g., “A”) associated with its chosen answer option. This approach allows the model to explicitly compare answer options, reduces computational costs, and mitigates the effects of tokenization scheme and answer option representations on answer selection. For the natural approach to be effective, the LLM it is used with must be able to associate answer options with the symbols that represent them. The LLM needs what we term multiple choice symbol binding (MCSB) ability. This ability varies greatly by model. We show that a model with high MCSB ability performs much better with the natural approach than with the traditional approach across 20 diverse datasets and largely closes the gap with the SOTA, suggesting that the MCQA ability of LLMs has been previously underestimated.more » « less
An official website of the United States government
