The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$ in black hole mass and $\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accounting for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity.
Bright quasar samples at high redshift are useful for investigating active galactic nuclei evolution. In this study, we describe XQz5, a sample of 83 ultraluminous quasars in the redshift range 4.5 < z < 5.3 with optical and near-infrared spectroscopic observations, with unprecedented completeness at the bright end of the quasar luminosity function. The sample is observed with the Southern Astrophysical Research Telescope, the Very Large Telescope, and the Australian National University 2.3 m Telescope, resulting in a high-quality, moderate-resolution spectral atlas of the brightest known quasars within the redshift range. We use established virial mass relations to derive the black hole masses by measuring the observed Mg ii λ2799 Å emission line and we estimate the bolometric luminosity with bolometric corrections to the ultraviolet continuum. Comparisons to literature samples show that XQz5 bridges the redshift gap between other X-shooter quasar samples, XQ-100 and XQR-30, and is a brighter sample than both. Luminosity-matched lower redshift samples host more massive black holes, which indicate that quasars at high redshift are more active than their counterparts at lower redshift, in concordance with recent literature.
more » « less- NSF-PAR ID:
- 10475314
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3912-3931
- Size(s):
- p. 3912-3931
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
We present bolometric luminosities, black hole masses, and Eddington ratios for 42 luminous quasars at z ≳ 6 using high signal-to-noise ratio VLT/X-shooter spectra, acquired as part of the enlarged ESO Large Programme XQR-30 . In particular, we derived the bolometric luminosities from the rest-frame 3000 Å luminosities using a bolometric correction from the literature, as well as the black hole masses by modeling the spectral regions around the C IV 1549 Å and the Mg II 2798 Å emission lines, with scaling relations calibrated in the Local Universe. We find that the black hole masses derived from both emission lines are in the same range and the scatter of the measurements agrees with expectations from the scaling relations. The Mg II -derived masses are between ∼(0.8−12) ×10 9 M ⊙ and the derived Eddington ratios are within ∼0.13−1.73, with a mean (median) of 0.84(0.72). By comparing the total sample of quasars at z > 5.8, from this work and from the literature, to a bolometric luminosity distribution-matched sample at z ∼ 1.5, we find that quasars at high redshift host slightly less massive black holes, which accrete slightly more rapidly than those at lower z , with a difference in the mean Eddington ratios of the two samples of ∼0.27. These findings are in agreement with the results of recent works in the literature.more » « less
-
ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.
-
Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects.more » « less
-
null (Ed.)ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope of this relation, or the departure of individual AGNs from the best-fitting αOX–LUV relation (ΔαOX). The median value of the X-ray photon index is Γ ≈ 1.79, which does not show redshift evolution from z = 0 to z ∼ 7. The X-ray and UV properties of the most distant quasars could potentially be used as a standard candle to constrain cosmological models. The large scatter of our sample on the Hubble diagram highlights the importance of future large unbiased deep X-ray and radio surveys in using quasars in cosmological studies.more » « less