skip to main content


Title: Monitoring broad emission-line components in spectra of the two low-metallicity dwarf compact star-forming galaxies SBS 1420+540 and J1444+4840
ABSTRACT

We report the discovery of broad components with P-Cygni profiles of the hydrogen and helium emission lines in the two low-redshift low-metallicity dwarf compact star-forming galaxies SBS 1420+540 and J1444+4840. We found small stellar masses of 106.24 and 106.59 M⊙, low oxygen abundances 12 + log O/H of 7.75 and 7.45, high velocity dispersions reaching σ ∼ 700 and ∼1200 km s−1, high terminal velocities of the stellar wind of ∼1000 and ∼1000–1700 km s−1, respectively, and large EW(H β) of ∼300 Å for both. For SBS 1420+540, we succeeded in capturing an eruption phase by monitoring the variations of the broad-to-narrow component flux ratio. We observe a sharp increase of that ratio by a factor of 4 in 2017 and a decrease by about an order of magnitude in 2023. The peak luminosity of ∼1040 erg s−1 of the broad component in L(H α) lasted for about 6 yr out of a three-decades monitoring. This leads us to conclude that there is probably a luminous blue variable candidate (LBVc) in this galaxy. As for J1444+4840, its very high L(H α) of about 1041 ergs s−1, close to values observed in active galactic nuclei (AGNs) and Type IIn supernovae (SNe), and the variability of no more than 20 per cent of the broad-to-narrow flux ratio of the hydrogen and helium emission lines over a 8 yr monitoring do not allow us to definitively conclude that it contains an LBVc. On the other hand, the possibility that the line variations are due to a long-lived stellar transient of type AGN/SN IIn cannot be ruled out.

 
more » « less
NSF-PAR ID:
10475315
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3932-3944
Size(s):
["p. 3932-3944"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We have studied the spectral time variations of candidate luminous blue variable (cLBV) stars in two low-metallicity star-forming galaxies, DDO 68 and PHL 293B. The LBV in DDO 68, located in H ii region #3, shows an outburst, with an increase of more than 1000 times in H α luminosity during the period 2008–2010. The broad emission of the H i and He i lines display a P Cygni profile, with a relatively constant terminal velocity of ∼800 km s−1, reaching a maximum luminosity L(H α) of ∼2 × 1038 erg s−1, with a full width at half-maximum (FWHM) of ∼1000–1200 km s−1. On the other hand, since the discovery of a cLBV in 2001 in PHL 293B, the fluxes of the broad components and the broad-to-narrow flux ratios of the H i and He i emission lines in this galaxy have remained nearly constant over 16 yr, with small variations. The luminosity of the broad H α component varies between ∼2 × 1038 erg s−1 and ∼1039 erg s−1, with the FWHM varying in the range ∼500–1500 km s−1. Unusually persistent P Cygni features are clearly visible until the end of 2020 despite a decrease of the broad-to-narrow flux ratio in the most recent years. A terminal velocity of ∼800 km s−1 is measured from the P Cygni profile, similar to the one in DDO 68, although the latter is 3.7 more metal-deficient than PHL 293B. The relative constancy of the broad H α luminosity in PHL 293B suggests that it is due to a long-lived stellar transient of type LBV/SN IIn.

     
    more » « less
  2. Abstract

    We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mgii, Hβ, and Hα) in the spectra of the luminous quasar (λLλ(5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz= 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars.

     
    more » « less
  3. Abstract

    We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 Myr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object.

     
    more » « less
  4. Abstract

    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σsignificance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withLX∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.

     
    more » « less
  5. ABSTRACT

    We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.

     
    more » « less