We present an analysis of new and archival data to the 20.506 minute LISA verification binary J052610.42+593445.32 (J0526+5934). Our joint spectroscopic and photometric analysis finds that the binary contains an unseen
We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (
- NSF-PAR ID:
- 10439602
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 953
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L1
- Size(s):
- Article No. L1
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M 1= 0.89 ± 0.11M ⊙CO-core white dwarf primary with anM 2= 0.38 ± 0.07M ⊙post-core-burning subdwarf, or low-mass white dwarf, companion. Given the short orbital period and relatively large total binary mass, we find that LISA will detect this binary with signal-to-noise ratio 44 after 4 yr of observations. J0526+5934 is expected to merge within 1.8 ± 0.3 Myr and likely result in a D6scenario Type Ia supernova or form a He-rich star that will evolve into a massive single white dwarf. -
Abstract Type Ia supernovae arise from thermonuclear explosions of white dwarfs accreting from a binary companion. Following the explosion, the surviving donor star leaves at roughly its orbital velocity. The discovery of the runaway helium subdwarf star US 708, and seven hypervelocity stars from Gaia data, all with spatial velocities ≳900 km s−1, strongly support a scenario in which the donor is a low-mass helium star or a white dwarf. Motivated by these discoveries, we perform three-dimensional hydrodynamical simulations with the
Athena++ code, modeling the hydrodynamical interaction between a helium star or helium white dwarf and the supernova ejecta. We find that ≈0.01–0.02M ⊙of donor material is stripped, and explain the location of the stripped material within the expanding supernova ejecta. We continue the postexplosion evolution of the shocked donor stars with theMESA code. As a result of entropy deposition, they remain luminous and expanded for ≈105–106yr. We show that the postexplosion properties of our helium white dwarf donor agree reasonably with one of the best-studied hypervelocity stars, D6-2. -
Abstract Close binary interactions may play a critical role in the formation of the rapidly rotating Be stars. Mass transfer can result in a mass gainer star spun up by the accretion of mass and angular momentum, while the mass donor is stripped of its envelope to form a hot and faint helium star. Far-UV spectroscopy has led to the detection of about 20 such binary Be+sdO systems. Here we report on a 3 yr program of high-quality spectroscopy designed to determine the orbital periods and physical properties of five Be binary systems. These binaries are long orbital period systems with
P = 95–237 days and small semiamplitudeK 1< 11 km s−1. We combined the Be star velocities with prior sdO measurements to obtain mass ratios. A Doppler tomography algorithm shows the presence of the Heii λ 4686 line in the faint spectrum of the hot companion in four of the targets. We discuss the observed line variability and show evidence of phase-locked variations in the emission profiles of HD 157832, suggesting a possible disk spiral density wave due to the presence of the companion star. The stripped companions in HD 113120 and HD 137387 may have a mass larger than 1.4M ⊙, indicating that they could be progenitors of Type Ib and Ic supernovae. -
Abstract The origin of the bright and hard X-ray emission flux among the
γ Cas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγ Cas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγ Cas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγ Cas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving white dwarfs as the only viable candidates for the companions. -
Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a
P orb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,M sdB= 0.383 ± 0.028M ⊙with a massive white dwarf companion,M WD= 0.725 ± 0.026M ⊙. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESA model predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESA stellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92M ⊙with a thick helium layer of 0.17M ⊙. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.