Program synthesis is the problem of finding a program that satisfies a given specification. Most program synthesizers are based on enumerating program candidates that satisfy the specification. Recently, several new tools for program synthesis have been proposed where Satisfiability Modulo Theories (SMT) solvers are used to prune the search space by discarding programs that do not satisfy the specification. The size of current tree-based SMT encodings for program synthesis grows exponentially with the size of the program. In this paper, a new compact line-based encoding is proposed that allows a faster enumeration of the program space. Experimental results on a large set of query synthesis problem instances show that using the new encoding results in a more effective tool that is able to synthesize larger programs.
more »
« less
A Procedure for SyGuS Solution Fitting via Matching and Rewrite Rule Discovery
Syntax-guided synthesis (SyGuS) is a recent software synthesis paradigm in which an automated synthesis tool is asked to synthesize a term that satisfies both a semantic and a syntactic specification. We consider a special case of the SyGuS problem, where a term is already known to satisfy the semantic specification but may not satisfy the syntactic one. The goal is then to find an equivalent term that additionally satisfies the syntactic specification, provided by a context-free grammar. We introduce a novel procedure for solving this problem which leverages pattern matching and automated discovery of rewrite rules. We also provide an implementation of the procedure by modifying the SyGuS solver embedded in the cvc5 SMT solver. Our evaluation shows that our new procedure significantly outperforms the state of the art on a large set of SyGuS problems for standard SMT-LIB theories such as bit-vectors, arithmetic, and strings.
more »
« less
- Award ID(s):
- 2006407
- PAR ID:
- 10475330
- Editor(s):
- Nadel, Alexander; Rozier, Kristin Yvonne
- Publisher / Repository:
- TU Wien Academic Press
- Date Published:
- Journal Name:
- Proceedings of the 23rd International Conference on Formal Methods In Computer-Aided Design (FMCAD '23)
- Subject(s) / Keyword(s):
- formal methods
- Format(s):
- Medium: X
- Location:
- Ames, Iowa
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Syntax-guided synthesis (SyGuS) aims to find a program satisfying semantic specification as well as user-provided structural hypotheses. There are two main synthesis approaches: enumerative synthesis, which repeatedly enumerates possible candidate programs and checks their correctness, and deductive synthesis, which leverages a symbolic procedure to construct implementations from specifications. Neither approach is strictly better than the other: automated deductive synthesis is usually very efficient but only works for special grammars or applications; enumerative synthesis is very generally applicable but limited in scalability. In this paper, we propose a cooperative synthesis technique for SyGuS problems with the conditional linear integer arithmetic (CLIA) background theory, as a novel integration of the two approaches, combining the best of the two worlds. The technique exploits several novel divide-and-conquer strategies to split a large synthesis problem to smaller subproblems. The subproblems are solved separately and their solutions are combined to form a final solution. The technique integrates two synthesis engines: a pure deductive component that can efficiently solve some problems, and a height-based enumeration algorithm that can handle arbitrary grammar. We implemented the cooperative synthesis technique, and evaluated it on a wide range of benchmarks. Experiments showed that our technique can solve many challenging synthesis problems not possible before, and tends to be more scalable than state-of-the-art synthesis algorithms.more » « less
-
Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools.more » « less
-
Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket.more » « less
-
Enea, Constantin; Lal, Akash (Ed.)Abstract We study satisfiability modulo the theory of finite fields and give a decision procedure for this theory. We implement our procedure for prime fields inside the cvc5 SMT solver. Using this theory, we construct SMT queries that encode translation validation for various zero knowledge proof compilers applied to Boolean computations. We evaluate our procedure on these benchmarks. Our experiments show that our implementation is superior to previous approaches (which encode field arithmetic using integers or bit-vectors).more » « less
An official website of the United States government

