skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Grammar Filtering for Syntax-Guided Synthesis
Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools.  more » « less
Award ID(s):
1715387 1553168
NSF-PAR ID:
10198260
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
02
ISSN:
2159-5399
Page Range / eLocation ID:
1611 to 1618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Syntax-guided synthesis has been a prevalent theme in various computer-aided programming systems. However, the domain of bit-vector synthesis poses several unique challenges that have not yet been sufficiently addressed and resolved. In this paper, we propose a novel synthesis approach that incorporates a distinct enumeration strategy based on various factors. Technically, this approach weighs in subexpression recurrence by term-graph-based enumeration, avoids useless candidates by example-guided filtration, prioritizes valuable components identified by large language models. This approach also incorporates a bottom-up deduction step to enhance the enumeration algorithm by considering subproblems that contribute to the deductive resolution. We implement all the enhanced enumeration techniques in our SyGuS solver DryadSynth, which outperforms state-of-the-art solvers in terms of the number of solved problems, execution time, and solution size. Notably, DryadSynth successfully solved 31 synthesis problems for the first time, including 5 renowned Hacker's Delight problems. 
    more » « less
  2. Nadel, Alexander ; Rozier, Kristin Yvonne (Ed.)
    Syntax-guided synthesis (SyGuS) is a recent software synthesis paradigm in which an automated synthesis tool is asked to synthesize a term that satisfies both a semantic and a syntactic specification. We consider a special case of the SyGuS problem, where a term is already known to satisfy the semantic specification but may not satisfy the syntactic one. The goal is then to find an equivalent term that additionally satisfies the syntactic specification, provided by a context-free grammar. We introduce a novel procedure for solving this problem which leverages pattern matching and automated discovery of rewrite rules. We also provide an implementation of the procedure by modifying the SyGuS solver embedded in the cvc5 SMT solver. Our evaluation shows that our new procedure significantly outperforms the state of the art on a large set of SyGuS problems for standard SMT-LIB theories such as bit-vectors, arithmetic, and strings. 
    more » « less
  3. Abstract Constraint answer set programming or CASP, for short, is a hybrid approach in automated reasoning putting together the advances of distinct research areas such as answer set programming, constraint processing, and satisfiability modulo theories. CASP demonstrates promising results, including the development of a multitude of solvers: acsolver, clingcon, ezcsp, idp, inca, dingo, mingo, aspmt2smt, clingo[l,dl], and ezsmt . It opens new horizons for declarative programming applications such as solving complex train scheduling problems. Systems designed to find solutions to constraint answer set programs can be grouped according to their construction into, what we call, integrational or translational approaches. The focus of this paper is an overview of the key ingredients of the design of constraint answer set solvers drawing distinctions and parallels between integrational and translational approaches. The paper also provides a glimpse at the kind of programs its users develop by utilizing a CASP encoding of Traveling Salesman problem for illustration. In addition, we place the CASP technology on the map among its automated reasoning peers as well as discuss future possibilities for the development of CASP. 
    more » « less
  4. Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket.

     
    more » « less
  5. While reactive synthesis and syntax-guided synthesis (SyGuS) have seen enormous progress in recent years, combining the two approaches has remained a challenge. In this work, we present the synthesis of reactive programs from Temporal Stream Logic modulo theories (TSL-MT), a framework that unites the two approaches to synthesize a single program. In our approach, reactive synthesis and SyGuS collaborate in the synthesis process, and generate executable code that implements both reactive and data-level properties. We present a tool, temos, that combines state-of-the-art methods in reactive synthesis and SyGuS to synthesize programs from TSL-MT specifications. We demonstrate the applicability of our approach over a set of benchmarks, and present a deep case study on synthesizing a music keyboard synthesizer. 
    more » « less