skip to main content


Title: Error analysis of a linear numerical scheme for the Landau–Lifshitz equation with large damping parameters

A second‐order accurate, linear numerical method is analyzed for the Landau–Lifshitz equation with large damping parameters. This equation describes the dynamics of magnetization, with a non‐convexity constraint of unit length of the magnetization. The numerical method is based on the second‐order backward differentiation formula in time, combined with an implicit treatment for the linear diffusion term from the harmonic mapping part and explicit extrapolation for the nonlinear terms. Afterward, a projection step is applied to normalize the numerical solution at a point‐wise level. This numerical scheme has shown extensive advantages in the practical computations for the physical model with large damping parameters, which comes from the fact that only a linear system with constant coefficients (independent of both time and the updated magnetization) needs to be solved at each time step, and has greatly improved the numerical efficiency. Meanwhile, a theoretical analysis for this linear numerical scheme has not been available. In this paper, we provide a rigorous error estimate of the numerical scheme, in the discrete norm, under suitable regularity assumptions and reasonable ratio between the time step size and the spatial mesh size. In particular, the projection operation is nonlinear, and a stability estimate for the projection step turns out to be highly challenging. Such a stability estimate is derived in details, which will play an essential role in the convergence analysis for the numerical scheme, if the damping parameter is greater than 3.

 
more » « less
PAR ID:
10475393
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematical Methods in the Applied Sciences
Volume:
46
Issue:
18
ISSN:
0170-4214
Format(s):
Medium: X Size: p. 18952-18974
Size(s):
p. 18952-18974
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The anisotropic phase‐field dendritic crystal growth model is a highly nonlinear system that couples the anisotropic Allen–Cahn equation and the thermal equation together. Due to the high anisotropy and nonlinear couplings in the system, how to develop an accurate and efficient, especially a fully decoupled scheme, has always been a challenging problem. To solve the challenge, in this article, we construct a novel fully decoupled numerical scheme which is also linear, energy stable, and second‐order time accurate. The key idea to realize the full decoupling structure is to introduce an ordinary differential equation to deal with the nonlinear coupling terms satisfying the so‐called “zero‐energy‐contribution” property. This scheme is very effective and easy to implement since only a few fully decoupled elliptic equations with constant coefficients need to be solved at each time step. We rigorously prove the solvability of each step and the unconditional energy stability, and perform a large number of numerical simulations in 2D and 3D to demonstrate its stability and accuracy numerically.

     
    more » « less
  2. A class of nonlinear Fokker–Planck equations with nonlocal interactions may include many important cases, such as porous medium equations with external potentials and aggregation–diffusion models. The trajectory equation of the Fokker–Plank equation can be derived based on an energetic variational approach. A structure‐preserving numerical scheme that is mass conservative, energy stable, uniquely solvable, and positivity preserving at a theoretical level has also been designed in the previous work. Moreover, the numerical scheme is shown to satisfy the discrete energetic dissipation law and preserve steady states and has been observed to be second order accurate in space and first‐order accurate time in various numerical experiments. In this work, we give the rigorous convergence analysis for the highly nonlinear numerical scheme. A careful higher order asymptotic expansion is needed to handle the highly nonlinear nature of the trajectory equation. In addition, two step error estimates (a rough estimate and a refined estimate) are necessary in the convergence proof. Different from a standard error estimate, the rough estimate is performed to control the nonlinear term. A few numerical results are also presented to verify the optimal convergence order and the preservation of equilibria.

     
    more » « less
  3. Curvilinear, multiblock summation-by-parts finite difference operators with the simultaneous approximation term method provide a stable and accurate framework for solving the wave equation in second order form. That said, the standard method can become arbitrarily stiff when characteristic boundary conditions and nonlinear interface conditions are used. Here we propose a new technique that avoids this stiffness by using characteristic variables to “upwind” the boundary and interface treatment. This is done through the introduction of an additional block boundary displacement variable. Using a unified energy, which expresses both the standard as well as characteristic boundary and interface treatment, we show that the resulting scheme has semidiscrete energy stability for the scalar anisotropic wave equation. The theoretical stability results are confirmed with numerical experiments that also demonstrate the accuracy and robustness of the proposed scheme. The numerical results also show that the characteristic scheme has a time step restriction based on standard wave propagation considerations and not the boundary closure. 
    more » « less
  4. In this paper, we consider the numerical approximations for a hydrodynamical model of smectic-A liquid crystals. The model, derived from the variational approach of the modified Oseen– Frank energy, is a highly nonlinear system that couples the incompressible Navier–Stokes equations and a constitutive equation for the layer variable. We develop two linear, second order time marching schemes based on the Invariant Energy Quadratization method for nonlinear terms in the constitutive equation, the projection method for the Navier–Stokes equations, and some subtle implicit-explicit treatments for the convective and stress terms. Moreover, we prove the well-posedness of the linear system and their unconditionally energy stabilities rigorously. Various numerical experiments are presented to demonstrate the stability and the accuracy of the numerical schemes in simulating the dynamics under shear flow and the magnetic field. 
    more » « less
  5. We consider numerical approximations for a phase-field dendritic crystal growth model, which is a highly nonlinear system that couples the anisotropic Allen–Cahn type equation and the heat equation. By combining the stabilized-Invariant Energy Quadratization method with a novel decoupling technique, the scheme requires solving only a sequence of linear elliptic equations at each time step, making it the first, to the best of the author’s knowledge, totally decoupled, linear, unconditionally energy stable scheme for the model. We further prove the unconditional energy stability rigorously and present various numerical simulations to demonstrate the stability and accuracy. 
    more » « less